最开始,笔者将状态 fif_{i}fi​ 定义为1到i的最小花费 ,我们不难得到这样的一个状态转移方程,即

fi=(sumti−sumtj+S+Costj)∗(sumfi−sumfj)f_{i}=(sumt_{i}-sumt_{j}+S+Cost_{j})*(sumf_{i}-sumf_{j})fi​=(sumti​−sumtj​+S+Costj​)∗(sumfi​−sumfj​) 。

可是我们发现这时 CostjCost_{j}Costj​ 非常不好算,而且当前的决策还会对后面的决策产生影响,而且这个转移方程是明显不具备最优子结构的(想一想, 为什么?)。
那么,我们就换一个思路,将 fif_{i}fi​ 重新定义,我们可将 fif_{i}fi​ 定义为

fi=min(fj+(sumfi−sumfj)∗(sumti−sumtj+S)+(sumti−sumtj+S)∗(sumfn−sumfi))f_{i}=min(f_{j}+(sumf_{i}-sumf_{j})*(sumt_{i}-sumt_{j}+S)+(sumt_{i}-sumt_{j}+S)*(sumf_{n}-sumf_{i}))fi​=min(fj​+(sumfi​−sumfj​)∗(sumti​−sumtj​+S)+(sumti​−sumtj​+S)∗(sumfn​−sumfi​))

即我们定义的 fif_{i}fi​ 还考虑了对后面的贡献,这样就可以愉快的进行dp了。
时间复杂度是 O(n2)O(n^2)O(n2) ,其实我们还可以用斜率优化将其优化到 O(n)O(n)O(n) ,不过方法不难,笔者就不再阐述。
Code:

#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn = 5002;
const long long inf = 10000000000 + 3;
long long sumf[maxn], sumt[maxn], f[maxn];
int main()
{
int n, s;
scanf("%d%d",&n,&s);
for(int i = 1;i <= n;++i)
{
scanf("%d%d",&sumt[i], &sumf[i]);
sumt[i] += sumt[i - 1], sumf[i] += sumf[i - 1];
}
for(int i = 1;i <= n; ++i)
{
f[i] = inf;
for(int j = 0;j < i; ++j)
f[i] = min(f[i], f[j] + (sumf[i] - sumf[j]) * (sumt[i] - sumt[j] + s) + (sumt[i] - sumt[j] + s) * (sumf[n] - sumf[i]));
}
printf("%lld",f[n]);
return 0;
}

  

洛谷 P2365 任务安排_代价提前计算 + 好题的更多相关文章

  1. 洛谷P2365 任务安排(斜率优化dp)

    传送门 思路: 最朴素的dp式子很好考虑:设\(dp(i,j)\)表示前\(i\)个任务,共\(j\)批的最小代价. 那么转移方程就有: \[ dp(i,j)=min\{dp(k,j-1)+(sumT ...

  2. [洛谷P2365] 任务安排

    洛谷题目链接:任务安排 题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时 ...

  3. 2018.07.09 洛谷P2365 任务安排(线性dp)

    P2365 任务安排 题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间 ...

  4. 洛谷P2365 任务安排 [解法二 斜率优化]

    解法一:http://www.cnblogs.com/SilverNebula/p/5926253.html 解法二:斜率优化 在解法一中有这样的方程:dp[i]=min(dp[i],dp[j]+(s ...

  5. 洛谷P2365 任务安排 [解法一]

    题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti.在每批任务开始 ...

  6. 洛谷P1220关路灯[区间DP 提前计算代价]

    题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯. 为了给村 ...

  7. [洛谷 P2365] 任务安排 (线性dp)

    3月14日第二题!! 题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间 ...

  8. 洛谷 P2365 任务安排【dp】

    其实是可以斜率优化的但是没啥必要 设st为花费时间的前缀和,sf为Fi的前缀和,f[i]为分组到i的最小花费 然后枚举j转移,考虑每次转移都是把j到i分为一组这样意味着j及之后的都要增加s的时间,同时 ...

  9. 洛谷P1067 多项式输出 NOIP 2009 普及组 第一题

    洛谷P1067 多项式输出 NOIP 2009 普及组 第一题 题目描述 一元n次多项式可用如下的表达式表示: 输入输出格式 输入格式 输入共有 2 行 第一行 1 个整数,n,表示一元多项式的次数. ...

随机推荐

  1. sqlalchemy根据表名动态创建model类

    作用如题,直接上代码吧,另外还支持 copy一张表的表结构,新建表并获得model对象 # coding: utf-8 import traceback from sqlalchemy import ...

  2. HDU - 2923 - Einbahnstrasse

    题目: Einbahnstrasse Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  3. HDU 3934

    /*这是用的有旋转卡壳的思想. 首先确定i,j,对k进行循环,知道找到第一个k使得cross(i,j,k)>cross(i,j,k+1),如果k==i进入下一次循环. 对j,k进行旋转,每次循环 ...

  4. linux c 操作utmp 和 wtmp 文件接口

    /var/run/utmp 保存当前在本系统中的用户信息 /var/log/wtmp 保存登陆过本系统的用户信息 他们保存的信息是基于结构体 struct utmp 的(/usr/include/bi ...

  5. [ Javascript ] 内存泄露以及循环引用解析

    内存泄露 在javascript中,我们非常少去关注内存的管理. 我们创建变量,使用变量,浏览器关注这些底层的细节都显得非常正常. 可是当应用程序变得越来越复杂而且ajax化之后,或者用户在一个页面停 ...

  6. luogu2518 [HAOI2010] 计数

    题目大意 给出一个数字$n$,求满足下列条件的数$x$的个数: $x<n$ 对于来自于$x$十进制各个数位上的非零数字,它们的种类与个数都与$n$的相同. 思路 入手点 设$n$有$t$位数字, ...

  7. LightOJ--1152--Hiding Gold(二分图奇偶建图)(好题)

    Hiding Gold Time Limit: 2000MS   Memory Limit: 32768KB   64bit IO Format: %lld & %llu Submit Sta ...

  8. 产生冠军--hdoj

    产生冠军 Time Limit : 1000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Submissi ...

  9. Java-JDK:JDK清单

    ylbtech-Java-JDK:JDK清单 1.返回顶部   2.返回顶部   3.返回顶部   4.返回顶部   5.返回顶部     6.返回顶部   作者:ylbtech出处:http://y ...

  10. NOIP2012D2T1 同余方程

    [NOIP2012T4]同余方程 noip2012-tg 描述 求关于 x的同余方程 ax ≡ 1(mod b) 的最小正整数解. 输入格式 输入文件 mod.in 输入只有一行,包含两个正整数a,b ...