题目:利用自适应概率网络设计一种在线脑机接口楼方法控制手部抓握

概要:这篇文章提出了一种新的脑机接口方法,控制手部,系列手部抓握动作和张开在虚拟现实环境中。这篇文章希望在现实生活中利用脑机接口技术控制抓握。BCI研究的一个难点是被试者训练问题。现在,大多数方法采用的离线的无反馈训练

我们研究了被试者在进行运动想象时候,是否能够在没有离线训练而直接就在线训练中取得良好的表现。

另外一个重要的话题是设计在线BCI系统,机器学习的方法分类以不同天数标记的大脑信号。

设计了概率神经网络

只在线训练了三分钟,第一天的分类率就达到了79.0%,第二天的分类率达到了84.0%,而且只是用第一天的分类模型,没有做其他调整。

This paper presents a new online single-trial EEG-based brain鈥揷omputer interface (BCI) for controlling hand holding and sequence of hand grasping and opening in an interactive virtual reality environment. The goal of this research is to develop an interaction technique that will allow the BCI to be effective in real-world scenarios for hand grasp control. One of the major challenges in the BCI research is the subject training. Currently, in most online BCI systems, the classifier was trained offline using the data obtained during the experiments without feedback, and used in the next sessions in which the subjects receive feedback.

We investigated whether the subject could achieve satisfactory online performance without offline training while the subjects receive feedback from the beginning of the experiments during hand movement imagination.

Another important issue in designing an online BCI system is the machine learning to classify the brain signal which is characterized by significant day-to-day and subject-to-subject variations and time-varying probability distributions. Due to these variabilities, we introduce the use of an adaptive probabilistic neural network (APNN) working in a time-varying environment for classification of EEG signals. The experimental evaluation on ten na茂ve subjects demonstrated that an average classification accuracy of 75.4% was obtained during the first experiment session (day) after about 3 min of online training without offline training, and 81.4% during the second session (day). The average rates during third and eighth sessions are 79.0% and 84.0%, respectively, using previously calculated classifier during the first sessions, without online training and without the need to calibrate. The results obtained from more than 5000 trials on ten subjects showed that the method could provide a robust performance over different experiment sessions and different subjects.

论文笔记——An online EEG-based brain-computer interface for controlling hand grasp using an adaptive probabilistic neural network(10年被引用66次)的更多相关文章

  1. 论文笔记——Rethinking the Inception Architecture for Computer Vision

    1. 论文思想 factorized convolutions and aggressive regularization. 本文给出了一些网络设计的技巧. 2. 结果 用5G的计算量和25M的参数. ...

  2. 论文笔记: Deep Learning based Recommender System: A Survey and New Perspectives

    (聊两句,突然记起来以前一个学长说的看论文要能够把论文的亮点挖掘出来,合理的进行概括23333) 传统的推荐系统方法获取的user-item关系并不能获取其中非线性以及非平凡的信息,获取非线性以及非平 ...

  3. 论文笔记:(2019)GAPNet: Graph Attention based Point Neural Network for Exploiting Local Feature of Point Cloud

    目录 摘要 一.引言 二.相关工作 基于体素网格的特征学习 直接从非结构化点云中学习特征 从多视图模型中学习特征 几何深度学习的学习特征 三.GAPNet架构 3.1 GAPLayer 局部结构表示 ...

  4. 论文笔记:ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks

    ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks2018-03-05  11:13:05   ...

  5. Deep Learning论文笔记之(六)Multi-Stage多级架构分析

    Deep Learning论文笔记之(六)Multi-Stage多级架构分析 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些 ...

  6. 【论文笔记】Malware Detection with Deep Neural Network Using Process Behavior

    [论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40 ...

  7. Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记

    Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记 arXiv 摘要:本文提出了一种 DRL 算法进行单目标跟踪 ...

  8. A NEW HYPERSPECTRAL BAND SELECTION APPROACH BASED ON CONVOLUTIONAL NEURAL NETWORK文章笔记

    A NEW HYPERSPECTRAL BAND SELECTION APPROACH BASED ON CONVOLUTIONAL NEURAL NETWORK 文章地址:https://ieeex ...

  9. 论文笔记:语音情感识别(三)手工特征+CRNN

    一:Emotion Recognition from Human Speech Using Temporal Information and Deep Learning(2018 InterSpeec ...

随机推荐

  1. 用servlet验证密码2

    function createXMLHttpRequest() { var XMLHttpRequest1; if (window.XMLHttpRequest) { XMLHttpRequest_t ...

  2. 阿里推荐的线程使用方法 ThreadPoolExecutor

    阿里推荐原因:使用线程池可以减少创建和销毁线程上所花的时间以及系统资源的开销,然后之所以不用Executors自定义线程池,用ThreadPoolExecutor是为了规范线程池的使用,还有让其他人更 ...

  3. java----判断闰年和平年

    public class year{ public static void main(String[] args){ int year=2010; if((year%4==0&&yea ...

  4. firefox 开启安全禁用端口

    firefox 开启安全禁用端口 step1: 在firefox地址栏键入 about:config step2: 新建字符串 network.security.ports.banned.overri ...

  5. 【Java集合系列五】HashMap解析

    2017-07-31 19:36:00 一.简介 1.HashMap作用及使用场景 HashMap利用数组+单向链表的方式,实现了key-value型数据的存储功能.HashMap的size永远是2^ ...

  6. form表单提交到Servlet后,弹出对话框,然后在跳转页面

    在Servlet中添加一下代码即可 out.print("<script>alert('添加成功!');window.location='index.jsp';</scri ...

  7. Python 正则表达式相关问题

    这几天学习python,写正则表达式相关代码如下: import re print(re.search(r'(?<=<(\w+)>).*(?=<\/\1>)'," ...

  8. java的main函数组成

    package test;/*public static void main(String[] args)主函数特殊之处:1.格式是固定的2.被jvm(虚拟机)所识别和调用 public:因为权限必须 ...

  9. WebApi--------找到了与该请求匹配的多个操作问题解决

    错误信息: {"Message": "出现错误.","ExceptionMessage": "找到了与该请求匹配的多个操作: \r ...

  10. Java语法基础学习DayTwentyOne(网络编程)

    一.IP地址和端口号 1.作用 通过IP地址,唯一的定位互联网上一台主机. 端口号标识正在计算机上运行的进程,不同进程有不同的端口号,被规定为一个16位的整数0~65535,其中0~1023被预先定义 ...