论文笔记——An online EEG-based brain-computer interface for controlling hand grasp using an adaptive probabilistic neural network(10年被引用66次)
题目:利用自适应概率网络设计一种在线脑机接口楼方法控制手部抓握
概要:这篇文章提出了一种新的脑机接口方法,控制手部,系列手部抓握动作和张开在虚拟现实环境中。这篇文章希望在现实生活中利用脑机接口技术控制抓握。BCI研究的一个难点是被试者训练问题。现在,大多数方法采用的离线的无反馈训练
我们研究了被试者在进行运动想象时候,是否能够在没有离线训练而直接就在线训练中取得良好的表现。
另外一个重要的话题是设计在线BCI系统,机器学习的方法分类以不同天数标记的大脑信号。
设计了概率神经网络
只在线训练了三分钟,第一天的分类率就达到了79.0%,第二天的分类率达到了84.0%,而且只是用第一天的分类模型,没有做其他调整。
This paper presents a new online single-trial EEG-based brain鈥揷omputer interface (BCI) for controlling hand holding and sequence of hand grasping and opening in an interactive virtual reality environment. The goal of this research is to develop an interaction technique that will allow the BCI to be effective in real-world scenarios for hand grasp control. One of the major challenges in the BCI research is the subject training. Currently, in most online BCI systems, the classifier was trained offline using the data obtained during the experiments without feedback, and used in the next sessions in which the subjects receive feedback.
We investigated whether the subject could achieve satisfactory online performance without offline training while the subjects receive feedback from the beginning of the experiments during hand movement imagination.
Another important issue in designing an online BCI system is the machine learning to classify the brain signal which is characterized by significant day-to-day and subject-to-subject variations and time-varying probability distributions. Due to these variabilities, we introduce the use of an adaptive probabilistic neural network (APNN) working in a time-varying environment for classification of EEG signals. The experimental evaluation on ten na茂ve subjects demonstrated that an average classification accuracy of 75.4% was obtained during the first experiment session (day) after about 3 min of online training without offline training, and 81.4% during the second session (day). The average rates during third and eighth sessions are 79.0% and 84.0%, respectively, using previously calculated classifier during the first sessions, without online training and without the need to calibrate. The results obtained from more than 5000 trials on ten subjects showed that the method could provide a robust performance over different experiment sessions and different subjects.
论文笔记——An online EEG-based brain-computer interface for controlling hand grasp using an adaptive probabilistic neural network(10年被引用66次)的更多相关文章
- 论文笔记——Rethinking the Inception Architecture for Computer Vision
1. 论文思想 factorized convolutions and aggressive regularization. 本文给出了一些网络设计的技巧. 2. 结果 用5G的计算量和25M的参数. ...
- 论文笔记: Deep Learning based Recommender System: A Survey and New Perspectives
(聊两句,突然记起来以前一个学长说的看论文要能够把论文的亮点挖掘出来,合理的进行概括23333) 传统的推荐系统方法获取的user-item关系并不能获取其中非线性以及非平凡的信息,获取非线性以及非平 ...
- 论文笔记:(2019)GAPNet: Graph Attention based Point Neural Network for Exploiting Local Feature of Point Cloud
目录 摘要 一.引言 二.相关工作 基于体素网格的特征学习 直接从非结构化点云中学习特征 从多视图模型中学习特征 几何深度学习的学习特征 三.GAPNet架构 3.1 GAPLayer 局部结构表示 ...
- 论文笔记:ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks
ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks2018-03-05 11:13:05 ...
- Deep Learning论文笔记之(六)Multi-Stage多级架构分析
Deep Learning论文笔记之(六)Multi-Stage多级架构分析 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些 ...
- 【论文笔记】Malware Detection with Deep Neural Network Using Process Behavior
[论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40 ...
- Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记
Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记 arXiv 摘要:本文提出了一种 DRL 算法进行单目标跟踪 ...
- A NEW HYPERSPECTRAL BAND SELECTION APPROACH BASED ON CONVOLUTIONAL NEURAL NETWORK文章笔记
A NEW HYPERSPECTRAL BAND SELECTION APPROACH BASED ON CONVOLUTIONAL NEURAL NETWORK 文章地址:https://ieeex ...
- 论文笔记:语音情感识别(三)手工特征+CRNN
一:Emotion Recognition from Human Speech Using Temporal Information and Deep Learning(2018 InterSpeec ...
随机推荐
- angular实操
一.创建angular工程(一定要在管理员权限下运行,Windows可忽略) 1.安装angular CLi 在终端窗口打开想要创建的工程所在文件夹,如:Cd Desktop\Angular-proj ...
- 安装easydict
在运行lightheadrcnn做test时,提示缺少easydict 不知道什么原因,用pip install easydict或者conda install easydict都没有用,不能安装ea ...
- mysql 查询时指定校对规则
为了能在查询时忽略字段大小写,又不想修改数据表的属性配置,就在SQL语句中做了修改.结果在alibaba druid 执行时报错 com.alibaba.druid.sql.parser.Parser ...
- ROS机器人导航仿真(kinetic版本)
准备工作: ubuntu 16.04系统;ROS kinetic版本;ROS包turtlebot,导航包rbx1,模拟器arbotix,可视化rviz 1.安装ubuntu 16.04系统与安装ROS ...
- D3算法编写决策树
前言 所谓构建决策树, 就是递归的对数据集参数进行“最优特征”的选择.然后按最优特征分类成各个子数据集,继续递归. 最优特征的选择:依次计算按照各个特征进行分类以后数据集的熵,各个子数据集的熵比较后, ...
- HFun.快速开发平台(一)=》简述
[——使用成熟的技术实现了解的业务,关注面向对象,关注业务领域] 偶然的机会又回到了园子,看到上次的文章已是N年前,洽巧近期正在开发一个小程序,标题定为“快速开发平台”有点夸张,算是给自己定个小目标. ...
- 201671010142 <<面向对象程序设计(Java) 实验十五 线程 感悟和总结>>
继承Thread类实现多线程 继承Thread类的方法尽管被我列为一种多线程实现方式,但Thread本质上也是实现了Runnable接口的一个实例,它代表一个线程的实例,并且,启动线程的唯一方法就是通 ...
- 结队开发之NABCD
我们的产品小工具集合是为了解决办公室办公人员缺少一些快捷操作的痛苦,他们需要在不用登陆QQ或者QQ浏览器的情况下实现截图功能,但是现有的方案并没有很好地解决这些需求,我们有独特的办法,小工具集合中提供 ...
- python笔记20-装饰器、作用域
函数的作用域是就近原则,从里往外找,如果自己函数里有,就拿过来如果自己的函数里面没有的话,就去它父级函数里面找,父亲用不了儿子的,儿子可以用父亲的函数只有被调用才会执行# name = 'python ...
- python字符串常用操作
#### 1) 判断类型 - 9 | 方法 | 说明 || --- | --- || string.isspace() | 如果 string 中只包含空格,则返回 True | | string.i ...