题目:利用自适应概率网络设计一种在线脑机接口楼方法控制手部抓握

概要:这篇文章提出了一种新的脑机接口方法,控制手部,系列手部抓握动作和张开在虚拟现实环境中。这篇文章希望在现实生活中利用脑机接口技术控制抓握。BCI研究的一个难点是被试者训练问题。现在,大多数方法采用的离线的无反馈训练

我们研究了被试者在进行运动想象时候,是否能够在没有离线训练而直接就在线训练中取得良好的表现。

另外一个重要的话题是设计在线BCI系统,机器学习的方法分类以不同天数标记的大脑信号。

设计了概率神经网络

只在线训练了三分钟,第一天的分类率就达到了79.0%,第二天的分类率达到了84.0%,而且只是用第一天的分类模型,没有做其他调整。

This paper presents a new online single-trial EEG-based brain鈥揷omputer interface (BCI) for controlling hand holding and sequence of hand grasping and opening in an interactive virtual reality environment. The goal of this research is to develop an interaction technique that will allow the BCI to be effective in real-world scenarios for hand grasp control. One of the major challenges in the BCI research is the subject training. Currently, in most online BCI systems, the classifier was trained offline using the data obtained during the experiments without feedback, and used in the next sessions in which the subjects receive feedback.

We investigated whether the subject could achieve satisfactory online performance without offline training while the subjects receive feedback from the beginning of the experiments during hand movement imagination.

Another important issue in designing an online BCI system is the machine learning to classify the brain signal which is characterized by significant day-to-day and subject-to-subject variations and time-varying probability distributions. Due to these variabilities, we introduce the use of an adaptive probabilistic neural network (APNN) working in a time-varying environment for classification of EEG signals. The experimental evaluation on ten na茂ve subjects demonstrated that an average classification accuracy of 75.4% was obtained during the first experiment session (day) after about 3 min of online training without offline training, and 81.4% during the second session (day). The average rates during third and eighth sessions are 79.0% and 84.0%, respectively, using previously calculated classifier during the first sessions, without online training and without the need to calibrate. The results obtained from more than 5000 trials on ten subjects showed that the method could provide a robust performance over different experiment sessions and different subjects.

论文笔记——An online EEG-based brain-computer interface for controlling hand grasp using an adaptive probabilistic neural network(10年被引用66次)的更多相关文章

  1. 论文笔记——Rethinking the Inception Architecture for Computer Vision

    1. 论文思想 factorized convolutions and aggressive regularization. 本文给出了一些网络设计的技巧. 2. 结果 用5G的计算量和25M的参数. ...

  2. 论文笔记: Deep Learning based Recommender System: A Survey and New Perspectives

    (聊两句,突然记起来以前一个学长说的看论文要能够把论文的亮点挖掘出来,合理的进行概括23333) 传统的推荐系统方法获取的user-item关系并不能获取其中非线性以及非平凡的信息,获取非线性以及非平 ...

  3. 论文笔记:(2019)GAPNet: Graph Attention based Point Neural Network for Exploiting Local Feature of Point Cloud

    目录 摘要 一.引言 二.相关工作 基于体素网格的特征学习 直接从非结构化点云中学习特征 从多视图模型中学习特征 几何深度学习的学习特征 三.GAPNet架构 3.1 GAPLayer 局部结构表示 ...

  4. 论文笔记:ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks

    ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks2018-03-05  11:13:05   ...

  5. Deep Learning论文笔记之(六)Multi-Stage多级架构分析

    Deep Learning论文笔记之(六)Multi-Stage多级架构分析 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些 ...

  6. 【论文笔记】Malware Detection with Deep Neural Network Using Process Behavior

    [论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40 ...

  7. Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记

    Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记 arXiv 摘要:本文提出了一种 DRL 算法进行单目标跟踪 ...

  8. A NEW HYPERSPECTRAL BAND SELECTION APPROACH BASED ON CONVOLUTIONAL NEURAL NETWORK文章笔记

    A NEW HYPERSPECTRAL BAND SELECTION APPROACH BASED ON CONVOLUTIONAL NEURAL NETWORK 文章地址:https://ieeex ...

  9. 论文笔记:语音情感识别(三)手工特征+CRNN

    一:Emotion Recognition from Human Speech Using Temporal Information and Deep Learning(2018 InterSpeec ...

随机推荐

  1. CSAPP之阅读笔记-计算机系统漫游(1)

    最近在看CSAPP(深入理解计算机系统第二版),其实最新版是第三版.但是,我看了一下价格100多大洋,于是去老夫子旧书网上买了本第二版的,花了30多块钱.哈哈. 网上看了一些关于此书的书评,都说是本好 ...

  2. unistd.h

    unistd.h是unix std的意思,是POSIX标准定义的unix类系统定义符号常量的头文件, 包含了许多UNIX系统服务的函数原型 unistd.h在unix中类似于window中的windo ...

  3. Charles在Mac、iPhone、Android上抓http/https协议的包

    1.我使用的版本是4.0.2,下载和破解网上方法很多,不做说明 2.Charles在Mac上抓http/https协议的包 2.1先把这三个都给装上,装完后会自动跳转到钥匙串中 2.2如果装完后提示证 ...

  4. 谷歌SEO初学者常见问题解答

    最近事特多,群里很多同学都在问一些非常基础的问题,实在没时间更没心情回答. (因为有些问题很基础,这些基础性问题根本不是一两句话能说清的,问这些问题的明显需要自己去好好学习,就跟小学生学加减法一样,自 ...

  5. select、poll、epoll的区别

    本文写于2017-02-26,从老账号迁移到本账号,原文地址:https://www.cnblogs.com/huangweiyang/p/6444746.html select.poll.epoll ...

  6. chrome插件学习笔记

    manifest.json { "name": "test1", "description": "test1", &qu ...

  7. socket keepalive理解

    java socket编程中有个keepalive选项,看到这个选项经常会误解为长连接,不设置则为短连接,实则不然. socket连接建立之后,只要双方均未主动关闭连接,那这个连接就是会一直保持的,就 ...

  8. 实现简单的ssh功能

    客户端代码: # -*- coding=utf-8 -*- __Author__ = "Dennis" import socket client = socket.socket() ...

  9. shell练习题5

    需求如下: 用shell实现,把一个文件文档中只有一个数字的行给打印出来.(以/password文件为例,自行修改) 参考解答如下 方法1 #!/bin/bash file_name=passwd n ...

  10. 解决getElementsByClassName()在IE8下的兼容问题

    getElementsByClassName,这个方法让我们可以通过 class 属性中的类名来访问元素,但是IE9 以下的浏览器不支持 .为解决这个问题,我们写一个兼容函数 getByClass() ...