题目链接 https://cn.vjudge.net/problem/17712/origin
Andrew is working as system administrator and is planning to establish a new network in his company. There will be N hubs in the company, they can be connected to each other using cables. Since each worker of the company must have access to the whole network, each hub must be accessible by cables from any other hub (with possibly some intermediate hubs). 
Since cables of different types are available and shorter ones are cheaper, it is necessary to make such a plan of hub connection, that the maximum length of a single cable is minimal. There is another problem — not each hub can be connected to any other one because of compatibility problems and building geometry limitations. Of course, Andrew will provide you all necessary information about possible hub connections. 
You are to help Andrew to find the way to connect hubs so that all above conditions are satisfied. 

Input

The first line of the input contains two integer numbers: N - the number of hubs in the network (2 <= N <= 1000) and M - the number of possible hub connections (1 <= M <= 15000). All hubs are numbered from 1 to N. The following M lines contain information about possible connections - the numbers of two hubs, which can be connected and the cable length required to connect them. Length is a positive integer number that does not exceed 10 6. There will be no more than one way to connect two hubs. A hub cannot be connected to itself. There will always be at least one way to connect all hubs.

Output

Output first the maximum length of a single cable in your hub connection plan (the value you should minimize). Then output your plan: first output P - the number of cables used, then output P pairs of integer numbers - numbers of hubs connected by the corresponding cable. Separate numbers by spaces and/or line breaks.

Sample Input

4 6
1 2 1
1 3 1
1 4 2
2 3 1
3 4 1
2 4 1

Sample Output

1
4
1 2
1 3
2 3 思路:最小生成树应用,kruskal算法,只要将用过的权值标记出来(例如标记为-1),最后再将其输出就行。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;
const int N = 1e6+10;
int f[N];
struct edge{
int u;
int v;
int cap;
}e[N];
bool cmp(edge x, edge y){
return x.cap < y.cap;
}
int find(int x){
if(x != f[x]){
f[x] = find(f[x]);
}
return f[x];
}
int merge(int u,int v){
int t1 = find(f[u]);
int t2 = find(f[v]);
if(t1 != t2){
f[t2] = t1;
return 1;
}
return 0;
}
int main()
{
int n,m,i,j;
scanf("%d%d",&n,&m);
for(i = 0; i <= n; i++){
f[i] = i;
}
int max = 0,x = 0;
for(i = 1; i <= m; i++){
scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].cap);
}
sort(e+1,e+m+1,cmp);
for(i = 1; i <= m; i++){
if(merge(e[i].u,e[i].v) == 1){
if(e[i].cap > max){
max = e[i].cap;
}
e[i].cap = -1; //标记符合条件的边
x++;
if(x == n-1){
break;
}
}
}
printf("%d\n",max);
printf("%d\n",n-1);
for(i = 1; i <= m; i++){
if(e[i].cap == -1){ //输出符合条件的值
printf("%d %d\n",e[i].u,e[i].v);
}
}
return 0;
}

  


3 4

poj1681 Network的更多相关文章

  1. Recurrent Neural Network系列1--RNN(循环神经网络)概述

    作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...

  2. 创建 OVS flat network - 每天5分钟玩转 OpenStack(134)

    上一节完成了 flat 的配置工作,今天创建 OVS flat network.Admin -> Networks,点击 "Create Network" 按钮. 显示创建页 ...

  3. 在 ML2 中配置 OVS flat network - 每天5分钟玩转 OpenStack(133)

    前面讨论了 OVS local network,今天开始学习 flat network. flat network 是不带 tag 的网络,宿主机的物理网卡通过网桥与 flat network 连接, ...

  4. OVS local network 连通性分析 - 每天5分钟玩转 OpenStack(132)

    前面已经创建了两个 OVS local network,今天详细分析它们之间的连通性. launch 新的 instance "cirros-vm3",网络选择 second_lo ...

  5. 再部署一个 instance 和 Local Network - 每天5分钟玩转 OpenStack(131)

    上一节部署了 cirros-vm1 到 first_local_net,今天我们将再部署 cirros-vm2 到同一网络,并创建 second_local_net. 连接第二个 instance 到 ...

  6. 创建 OVS Local Network - 每天5分钟玩转 OpenStack(129)

    上一节我们完成了 OVS 的准备工作,本节从最基础的 local network 开始学习.local network 不会与宿主机的任何物理网卡连接,流量只被限制在宿主机内,同时也不关联任何的 VL ...

  7. Configure a bridged network interface for KVM using RHEL 5.4 or later?

    environment Red Hat Enterprise Linux 5.4 or later Red Hat Enterprise Linux 6.0 or later KVM virtual ...

  8. BZOJ 1146: [CTSC2008]网络管理Network [树上带修改主席树]

    1146: [CTSC2008]网络管理Network Time Limit: 50 Sec  Memory Limit: 162 MBSubmit: 3522  Solved: 1041[Submi ...

  9. [Network Analysis] 复杂网络分析总结

    在我们的现实生活中,许多复杂系统都可以建模成一种复杂网络进行分析,比如常见的电力网络.航空网络.交通网络.计算机网络以及社交网络等等.复杂网络不仅是一种数据的表现形式,它同样也是一种科学研究的手段.复 ...

随机推荐

  1. IScroll5不能滑到最底端的解决办法

    IScroll总体上用起来比较简单,但是如果用不好的可能会产生底部一点滚动不上去的问题. 环境:weui+iscroll5 整体布局及id如下 searchbarwrapper   divscroll ...

  2. java常见题目总结

    编写多线程程序的几种方法:java5以前可以通过继承Thread类或者实现Runnable接口,重写run方法来定义线程行为:java5以后出现了另一种方式,实现Callable接口,该接口的call ...

  3. python super参数错误

    # -*- coding:utf-8 _*-"""@author:Administrator@file: yamlparser.py@time: 2018/09/07&q ...

  4. nodejs学习以及SSJS漏洞

    0x01 简介 什么是nodejs,it's javascript webserver! JS是脚本语言,脚本语言都需要一个解析器才能运行.对于写在HTML页面里的JS,浏览器充当了解析器的角色.而对 ...

  5. gunicorn+anaconda+nginx部署django项目(ubuntu)

    首先进入conda 虚拟环境: source activate test 安装gunicorn: pip install gunicorn 运行gunicorn gunicorn -w 2 -b 12 ...

  6. BUAA-OO-表达式解析与求导

    BUAA-OO-表达式解析与求导 解析 按照常规,解析这一部分我们分为词法分析与语法分析.当然由于待解析的字符串较简单,词法分析器和语法分析器不必单独实现. 词法分析器 按照常规,我们先手写一个词法分 ...

  7. EOCS 最低资源保障机制

    本期小E将为大家带来EOCS 最低资源保障机制. 为满足普通用户日常的转账等基本需求,无需再为较少的初始资源抵押担心无法使用链上功能.EOCS可以通过链的参数来调整分配给每个用户免费的资源额度,相当于 ...

  8. 【干货】提取图片元数据之exiftool

    知识源:UC3Mx: INF.2x网络安全基础:实践方法 课程  第1周.讲座2.计算机取证  常见的法医痕迹  2.2.1.元数据 exiftool是一种查看,更新或删除元数据的工具.是Window ...

  9. C# this关键字的四种用法

    Go to below URL to find more details and example. http://blog.csdn.net/longlong821/article/details/7 ...

  10. 简单的C#网络爬虫

    Source Code: http://download.csdn.net/download/qdalong/10271880 这是爬取网页内容,像是这对大家来说都是不难得,但是在这里有一些小改动,代 ...