题目链接:https://ac.nowcoder.com/acm/contest/249/B

题目大意:

  略

分析1(记忆化搜索):

  方法为减而治之,把n划分成k份的答案就相当于每次把n分成a,b两个数,再把a分成k-1份,然后把每次a分成k-1份的答案相加即可。注意点是每轮分出来的b要不大于上一轮分出来的b。

代码如下:

 #include <bits/stdc++.h>
using namespace std; #define rep(i,n) for (int i = 0; i < (n); ++i)
#define For(i,s,t) for (int i = (s); i <= (t); ++i)
#define rFor(i,t,s) for (int i = (t); i >= (s); --i)
#define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
#define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i) #define pr(x) cout << #x << " = " << x << " "
#define prln(x) cout << #x << " = " << x << endl #define ALL(x) x.begin(),x.end()
#define INS(x) inserter(x,x.begin()) #define ms0(a) memset(a,0,sizeof(a))
#define msI(a) memset(a,inf,sizeof(a)) #define pii pair<int,int>
#define piii pair<pair<int,int>,int>
#define mp make_pair
#define pb push_back
#define fi first
#define se second inline int gc(){
static const int BUF = 1e7;
static char buf[BUF], *bg = buf + BUF, *ed = bg; if(bg == ed) fread(bg = buf, , BUF, stdin);
return *bg++;
} inline int ri(){
int x = , f = , c = gc();
for(; c<||c>; f = c=='-'?-:f, c=gc());
for(; c>&&c<; x = x* + c - , c=gc());
return x*f;
} typedef long long LL;
const int maxN = 1e5 + ; int n, k;
// f[i][j][k]表示数i分成j分的分法总数,k为限制条件,每种分法每份的值不能超过k,用来排除重复
// f[i][j][k] = f[i-1][j-1][1] + f[i-2][j-1][2] + ……+ f[i-min(k, i-1)][j-1][min(k, i-1)]
int f[][][]; int solve(int x, int y, int z){
int ret = ;
if(x < y) return ;
if(y == ) return x <= z ? : ;
if(f[x][y][z]) return f[x][y][z]; For(i, , x-) {
if(x-i > z) continue;
ret += solve(i, y-, x-i);
}
f[x][y][z] = ret;
return ret;
} int main(){
scanf("%d%d", &n, &k);
printf("%d\n", solve(n, k, ));
return ;
}

分析2(DP):

  见代码内注释

代码如下:

 #include <bits/stdc++.h>
using namespace std; #define rep(i,n) for (int i = 0; i < (n); ++i)
#define For(i,s,t) for (int i = (s); i <= (t); ++i)
#define rFor(i,t,s) for (int i = (t); i >= (s); --i)
#define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
#define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i) #define pr(x) cout << #x << " = " << x << " "
#define prln(x) cout << #x << " = " << x << endl #define ALL(x) x.begin(),x.end()
#define INS(x) inserter(x,x.begin()) #define ms0(a) memset(a,0,sizeof(a))
#define msI(a) memset(a,inf,sizeof(a)) #define pii pair<int,int>
#define piii pair<pair<int,int>,int>
#define mp make_pair
#define pb push_back
#define fi first
#define se second inline int gc(){
static const int BUF = 1e7;
static char buf[BUF], *bg = buf + BUF, *ed = bg; if(bg == ed) fread(bg = buf, , BUF, stdin);
return *bg++;
} inline int ri(){
int x = , f = , c = gc();
for(; c<||c>; f = c=='-'?-:f, c=gc());
for(; c>&&c<; x = x* + c - , c=gc());
return x*f;
} typedef long long LL;
const int maxN = 1e5 + ; int n, k;
// f[i][j]表示数i分成j份的分法总数
/*
当i < j时,很明显没法分,所以f[i][j] = 0;
当i == j时,只有一种分法,所以f[i][j] = 1;
当i > j时,考虑从小到大分,第1个如果分1,那么f[i][j] = f[i-1][j-1];
第1个如果分大于1的数,可以对所有j份都减一,然后再分,即 f[i][j] = f[i-j][j];
根据加法原则,f[i][j] = f[i-1][j-1] + f[i-j][j];
*/
int f[][]; int main(){
scanf("%d%d", &n, &k);
For(i, , n) f[i][] = ; // 无论什么数,分成一份都只有一种
For(i, , k)
For(j, , n)
if(j >= i) f[j][i] = f[j-][i-] + f[j-i][i]; printf("%d\n", f[n][k]);
return ;
}

NOIP2001提高组复赛B 数的划分的更多相关文章

  1. 洛谷 P1025 & [NOIP2001提高组] 数的划分(搜索剪枝)

    题目链接 https://www.luogu.org/problemnew/show/P1025 解题思路 一道简单的dfs题,但是需要剪枝,否则会TLE. 我们用dfs(a,u,num)来表示上一个 ...

  2. 【题解】NOIP2015提高组 复赛

    [题解]NOIP2015提高组 复赛 传送门: 神奇的幻方 \([P2615]\) 信息传递 \([P2661]\) 斗地主 \([P2668]\) 跳石头 \([P2678]\) 子串 \([P26 ...

  3. 【题解】NOIP2016提高组 复赛

    [题解]NOIP2016提高组 复赛 传送门: 玩具谜题 \(\text{[P1563]}\) 天天爱跑步 \(\text{[P1600]}\) 换教室 \(\text{[P1850]}\) 组合数问 ...

  4. NOIP 2015提高组复赛

    神奇的幻方 题目描述 幻方是一种很神奇的N*N矩阵:它由数字1,2,3,……,N*N构成,且每行.每列及两条对角线上的数字之和都相同. 当N为奇数时,我们可以通过以下方法构建一个幻方: 首先将1写在第 ...

  5. noip2001提高组题解

    今天继续感动滚粗.第一次提交170分,不能多说. 第一题:一元三次方程 明明是寒假讲分治的时候做过的题居然还是WA而且只拿了60分,说明知识掌握实在不够牢固. 寒假做的是保留4位小数,原题只保留2位, ...

  6. [日记&做题记录]-Noip2016提高组复赛 倒数十天

    写这篇博客的时候有点激动 为了让自己不颓 还是写写日记 存存模板 Nov.8 2016 今天早上买了两个蛋挞 吃了一个 然后就做数论(前天晚上还是想放弃数论 但是昨天被数论虐了 woc noip模拟赛 ...

  7. 洛谷-神奇的幻方-NOIP2015提高组复赛

    题目描述 幻方是一种很神奇的N*N矩阵:它由数字1,2,3,--,N*N构成,且每行.每列及两条对角线上的数字之和都相同. 当N为奇数时,我们可以通过以下方法构建一个幻方: 首先将1写在第一行的中间. ...

  8. 洛谷-乘积最大-NOIP2000提高组复赛

    题目描述 Description 今年是国际数学联盟确定的“2000――世界数学年”,又恰逢我国著名数学家华罗庚先生诞辰90周年.在华罗庚先生的家乡江苏金坛,组织了一场别开生面的数学智力竞赛的活动,你 ...

  9. [NOIP2001提高组]CODEVS1014 Car的旅行路线(最短路)

    最短路,这个不难想,但是要为它加边就有点麻烦..还好写完就过了(虽然WA了一次,因为我调试用的输出没删了..),不然实在是觉得挺难调的.. ------------------------------ ...

随机推荐

  1. 【小o地图Excel插件版】不止能做图表,还能抓58、大众点评网页数据...

    小o地图Excel插件版:一款基于Excel软件开发的地图软件,提供基于Excel表格进行地理数据挖掘.地理数据分析.地图绘制.地图图表等功能的工具类软件.具有易用.高效.稳定的特点,能够满足地理数据 ...

  2. java-Enumeration,单向队列Queue及双向队列Deque等容器简单使用

    1.Enumeration容器使用: package com.etc; import java.util.Enumeration; import java.util.Vector; /* Enumer ...

  3. 2-SAT速成

    本文只做总结性说明 2-SAT 2-SAT是k-SAT问题的一种,k-SAT问题在\(k>=3\)时已经被证明是NP完全问题 2-SAT问题定义比较简单 有n个布尔变量\(x_1-x_n\).给 ...

  4. ext遍历表单中所有输入项,并全部设置为只读

    baseInfoForm.getForm().getFields().each(function (field) { // 设置只读 field.setReadOnly(true); })

  5. 在MongoDB中创建一个索引而性能提升1000倍的小例子

    在https://www.cnblogs.com/xuliuzai/p/9965229.html的博文中我们介绍了MongoDB的常见索引的创建语法.部分同学还想看看MongoDB的威力到底有多大,所 ...

  6. tomcat设置开机启动

    一.windows 1. 下载tomcat 2. 进入bin目录,查看是否存在service.dat,如果没有自行创建 3. 打开cmd,进入tomcat>bin目录 说明:用法: servic ...

  7. GMM算法的matlab程序

    GMM算法的matlab程序 在“GMM算法的matlab程序(初步)”这篇文章中已经用matlab程序对iris数据库进行简单的实现,下面的程序最终的目的是求准确度. 作者:凯鲁嘎吉 - 博客园 h ...

  8. WPF中窗体最大化问题处理

    遇到的问题信息 问题:当WindowStyle=None时,窗口最大化,不显示任务栏 -- 即窗体是全屏效果. 解决中遇到的问题列表[主要涉及到任务栏发生改变后的一些问题处理]: 最大化时,任务栏被遮 ...

  9. insert into select的实际用法

    INSERT INTO SELECT语句 语句形式为:Insert into Table2(field1,field2,...) select value1,value2,... from Table ...

  10. mysql_报错1418

    报错如下: 1418 - This function has none of DETERMINISTIC, NO SQL, or READS SQL DATA in its declaration a ...