IAB303 Data Analytics Assessment Task
Assessment Task
IAB303 Data Analytics
for Business Insight
Semester I 2019
Assessment 2 – Data Analytics Notebook
Name Assessment 2 – Data Analytics Notebook
Due Sun 28 Apr 11:59pm
Weight 30% (indicative weighting)
Submit Jupyter Notebook via Blackboard
Rationale and Description
Foundational to addressing business concerns with data analytics is an understanding of
potential data sources, the kinds of techniques that may be used to process and analyse
those data, and an ability to present the final analytics in a way that is meaningful for the
stakeholders.
IAB303留学生作业代做、Data Analytics作业代写、代做c/c++实验作业
This assessment will involve the creation a Jupyter notebook, demonstrating your
understanding of the technical process required to address a business concern using data
analytics.
You will use your knowledge from the workshops together with the techniques practiced in the
practical lab sessions, and apply both to a selected business scenario. You will not only
perform the necessary steps, but also provide an explanation of your decision process.
Learning Outcomes
A successful completion of this task will demonstrate:
1. An understanding of how a variety of analysis techniques can be used to take raw data
and turn it into information that is meaningful to a business concern.
2. How a particular business concern shapes the decision-making process in data
analytics.
3. An ability to select, prepare, and use appropriate data, analysis techniques, and
visualisations.
4. An understanding of a variety of data sources and the way that the data is structured.
Essential Elements
You must submit 1 Jupyter notebook which will:
1. Demonstrate an understanding of:
a. Selecting and processing data appropriate for required analysis
b. Selecting and performing analysis techniques appropriate to a business concern
c. Addressing a business concern through visualisation of analysis
2. Document your decision making with explanations of your choices
You will use the code cells of the notebook to demonstrate your grasp of analysis techniques,
and you will use the markdown cells to (a) craft a narrative linking the analysis to a business
concern, and (b) document your decision making.
Further detail on the steps required to produce the notebooks is outlined in the ‘detailed
instructions’ section below.
Marking Criteria
This assessment is criteria referenced, meaning that your grade for the assessment will be
given based on your ability to satisfy key criteria. Refer to the attached Criteria Sheet and
ensure that you understand the detailed criteria.
It is important to realise that the assessment does not only require that you know or
understand, but also that you demonstrate or provide evidence of your understanding. This
means that you are making your knowledge and understanding clear to the person marking
your assignment.
You will not receive marks or percentages for this assessment. You will receive an overall
grade (e.g. pass - 4, high distinction - 7) based on the extent to which you meet the criteria. In
general, the most important criteria (criteria 1-5) will be essential to the grade, and the least
important (criteria 6-7) will affect the grade when important criteria results conflict or are
ambiguous.
Detailed Instructions
The notebook should tell a story (narrative) based on a selected scenario, that starts with the
data selection, moves through the analysis, and concludes with connecting the visualisation to
the primary business concern of the scenario. The story should make sense to the
stakeholders.
For each step, you must document your decision making and explain why you did what you
did. This description of thinking should align with the overall narrative.
1. Scenario: This will briefly describe the business, the business concern and its significance
to the business, and the key stakeholders who have an interest in the concern. Scenarios
will be provided via blackboard for you to select from. You may choose your own scenario
only if it is approved (in advance) by a member of the teaching team – it must meet
minimum standards. A description of how you interpret your scenario should be provided
at the beginning of your notebook.
2. Data: You will choose a data source appropriate to your scenario, and write the necessary
code to obtain the data and make it available for analysis in your notebook.
3. Processing: The data may need to be processed prior to analysis. At a minimum it should
be cleaned, but it may need to be processed in other ways appropriate to your chosen
analysis technique.
4. Analysis: You will need to select an analysis that is appropriate to your scenario, and which
also includes:
a. At least two of: reading and cleaning a text file, parsing unstructured data,
analysing with social media data.
b. At least one of: use of open data API or web-scraping.
5. Visualisation: You will need to create a visualisation that is appropriate to your scenario and
the results of your analysis. You must include at least two different types of visualisation
(e.g. tabular, graph or chart, annotated text).
6. Connect with concern: You need to connect your visualisation back to the business
concern in a way that is meaningful to the stakeholders of the business. This may involve
providing additional descriptive text that explains how the visualisation might address the
concern.
Resources
The following resources may assist with the completion of this task:
Refer to the workshop and lab notebooks for techniques and discussions of business
concerns
Use Slack to exchange code and discuss detail of the task
Questions
Questions related to the assessment should be directed initially to your tutor during the lab session or
on the appropriate slack channel. Your tutor may address these for the benefit of the whole class.
The teaching team will not be available to answer questions outside business hours, nor immediately
before the assessment is due.
Criteria Sheet – Assessment 1 Workbook - IAB303 Data Analytics for Business Insight
Criteria 7 6 5 4 3 2
[1] Evidence of a
meaningful connection
between data analytics
and a business
concern.
Makes a meaningful
connection between data
analytics and a business
concern with a
consistently clear
narrative that is interesting
and engaging.
Makes a meaningful
connection between
data analytics and a
business concern
through a consistently
clear narrative.
Mostly establishes a
meaningful connection
between data analytics and
a business concern but
lacks some consistency in
the clarity of the narrative.
Sufficiently connects the
data analytics to a
business concern to
establish a meaningful
relationship through the
use of a suitable narrative.
Some elements of the
narrative make it difficult to
see a meaningful
connection between the
data analytics and a
business concern.
There is little or no
evidence of a
meaningful connection
between the data
analytics and a
business concern.
[2] Demonstration of
appropriate techniques
for addressing a
business concern with
analytics.
All techniques are clearly
appropriate and are
consistently implemented
in an exemplary way.
All techniques are
clearly appropriate and
are implemented well.
All techniques are
appropriate but some
implementations could be
improved.
Techniques are sufficiently
appropriate and are
implemented adequately.
Techniques are either
inappropriate and/or are
used incorrectly.
There is little or no
demonstration of
appropriate technique
selection or use.
[3] Evidence of
understanding analytics
visualisation and its
significance to the
business concern.
Provides exemplary
evidence of a deep
understanding of analytics
visualisation and its
significance.
Provides evidence of a
robust understanding
of analytics
visualisation and its
significance.
Mostly provides evidence of
an understanding of
analytics visualisation and
its significance.
Provides evidence of a
basic understanding of
analytics visualisation and
its significance.
There is a lack of evidence
of understanding analytics
visualisation and/or its
significance.
This is little or no
evidence of
understanding of
analytics visualisation.
[4] Evidence of an
understanding of data
selection and analysis
techniques and their
importance to the data
analytics.
Provides exemplary
evidence of a deep
understanding of data
selection and analysis
techniques and their
importance.
Provides evidence of a
robust understanding
of data selection and
analysis technique and
their significance.
Mostly provides evidence of
an understanding of data
selection and analysis
techniques and their
significance.
Provides evidence of a
basic understanding of
data selection and analysis
techniques and their
significance.
There is a lack of evidence
of understanding of data
selection and/or analysis
techniques and/or their
significance.
There is little or no
evidence of
understanding of data
selection and analysis
techniques.
[5] Demonstration of
appropriate data
selection, processing
and analysis techniques
in order to yield a
desired result.
Data selection is excellent
for the task and all
techniques are clearly
appropriate and
implemented in an
exemplary way.
Data selection is well
suited to the task and
all techniques are
appropriate and
implemented well.
Data selection, processing
and analysis is mostly
appropriate and suitable to
the task. Most are
implemented well.
Data selection, processing
and analysis is
demonstrated sufficiently
to achieve a desired result.
Some processes or
techniques are missing,
incomplete and/or are
insufficient to achieve a
required result.
There is little or no
demonstration of data
selection and/or
analysis.
[6] Demonstration of
effective English
expression and use of
markdown.
Excellent English
expression and use of
markdown.
Very good English
expression and use of
markdown.
Generally good English
expression and use of
markdown.
English expression and use
of markdown is
satisfactory for the tasks.
English expression and/or
use of markdown is
insufficient for the tasks.
There is little or no
evidence of a
demonstration of
English expression.
[7] Demonstration of
good quality
programming practices
in the notebook code.
Excellent code quality due
to adherence to quality
programming practices.
Good code quality due
to mostly adhering to
quality programming
practices.
Generally good code quality
by mostly adhering to
quality programming
practices.
Code implementations are
sufficient for the required
tasks.
Code implementations are
inappropriate and/or
insufficient for the tasks.
There is little or no
evidence of good
programming
practices.
因为专业,所以值得信赖。如有需要,请加QQ:99515681 或邮箱:99515681@qq.com
微信:codinghelp
IAB303 Data Analytics Assessment Task的更多相关文章
- Toward Scalable Systems for Big Data Analytics: A Technology Tutorial (I - III)
ABSTRACT Recent technological advancement have led to a deluge of data from distinctive domains (e.g ...
- Big Data Analytics for Security(Big Data Analytics for Security Intelligence)
http://www.infoq.com/articles/bigdata-analytics-for-security This article first appeared in the IEEE ...
- [论文笔记] Methodologies for Data Quality Assessment and Improvement (ACM Comput.Surv, 2009) (1)
Carlo Batini, Cinzia Cappiello, Chiara Francalanci, and Andrea Maurino. 2009. Methodologies for data ...
- 12 Top Open Source Data Analytics Apps
1. Hadoop It would be impossible to talk about open source data analytics without mentioning Hadoop. ...
- [论文笔记] Methodologies for Data Quality Assessment and Improvement (ACM Comput.Surv, 2009) (2)
本篇博文主要对DMQ(S3.7)的分类进行了研读. 1. 这个章节提出了一种DQM的分类法(如下图) 由上图可见,该分类法的分类标准是对assessment & improvement阶段的支 ...
- [BOOKS]BIG DATA and DATA ANALYTICS: The Beginner's Guide to Understanding the Analytical World
- 机器学习&深度学习经典资料汇总,data.gov.uk大量公开数据
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...
- 《Toward an SDN-Enabled Big Data Platform for Social TV Analysis》--2015--Han Hu
<面向应用于社会TV分析的应用了SDN的大数据平台> Abstract social TV analytics 是什么,就是说很多TV观众在微博.微信和推特等这些地方分享他们的观感时,然后 ...
- 深数据 - Deep Data
暂无中文方面的信息,E文的也非常少,原文连接: A lot of great pieces have been written about the relatively recent surge in ...
随机推荐
- torch.linspace,unsqueeze()以及squeeze()函数
1.torch.linspace(start,end,steps=100,dtype) 作用是返回一个一维的tensor(张量),其中dtype是返回的数据类型. import torch print ...
- 主机服务绑定IP
在用 netstat -na 查看当前主机提供的服务,例如显示如下结果: tcp 0 0 127.0.0.1:9000 0.0.0.0:* ...
- 前端 $.parseJson()
$.parseJSON() 函数用于将符合标准格式的的JSON字符串转为与之对应的JavaScript对象. 例子: 这里首先给出JSON字符串集,字符串集如下: var data=" { ...
- HTTP协议08-请求首部字段
请求首部字段 请求首部字段是从客户端往服务器端发送请求报文中所使用的字段,用于补充请求的附加信息.客户端信息,对响应内容相关的优先级等内容 1)Accept 通知服务器,用户代理能够处理的媒体类型及媒 ...
- Win10上默认VS 2017以管理员身份运行
Win10上的UAC虽然是个好东西,但是对于使用开发工作的技术人员来说有时候也挺麻烦.这里有一个让VS2017无论如何都以管理员身份运行的方法. 1.进入VS2017的安装目录:..\Microsof ...
- 数位dp 的简单入门
时间紧张,就不讲那么详细了. 之前一直被深搜代码误解,以为数位dp 其实就是记忆化深搜...(虽说爆搜确实很舒服而且还好想) 但是后来发现数位dp 的标准格式其实是 预处理 + dp ...... 数 ...
- Linux下安装python的gmpy2库及遇到无法定位软件包的解决办法
gmpy2需要gmp.h &mpfr.h &mpc.h 安装命令: sudo apt-get install libmpfr-dev libmpc-dev 成功之后再输入安装命令: ...
- wx获取地理位置
1.公众号配置. 2.引入js 一个放在根目录下的txt文件. 3.1)第一个ajax为获取后台传给的wx.config需要的参数:wx.ready().通过ready接口处理成功验证.然后才是wx. ...
- C语言对字符串去重
# include <stdio.h> # include <string.h> char * getNewChar(char * str,char * newStr); in ...
- LQFP(未整理完成)
注意:文中所提供的链接有可能会失效.不定期维护,如有异常,期待指正,谢谢! LQFP48 7 x 7 mm 图片来源:https://www.st.com/resource/en/datasheet/ ...