CodeForces 958F3 Lightsabers (hard) 启发式合并/分治 多项式 FFT
原文链接http://www.cnblogs.com/zhouzhendong/p/8835443.html
题目传送门 - CodeForces 958F3
题意
有$n$个球,球有$m$种颜色,分别编号为$1\cdots m$,现在让你从中拿$k$个球,问拿到的球的颜色所构成的可重集合有多少种不同的可能。
注意同种颜色球是等价的,但是两个颜色为$x$的球不等价于一个。
$1\leq n\leq 2\times 10^5,\ \ \ \ \ 1\leq m,k\leq n$。
题解
来自Helvetic Coding Contest 2018 online mirror.
比赛的时候太蠢了只yy了个分治$FFT$,只有25分钟不敢写(其实说不定来得及,赛后写启发式合并不到20分钟A了(不过看了组数据(某种颜色出现次数为$0$的特殊情况)))。
分治$FFT$不讲,常数大容易被卡掉。
更好的做法是启发式合并。
考虑颜色集合S的计算结果为$a_{0\cdots x}$,其中$a_i$表示取$i$个球得到的不同结果数。
当合并两个颜色集合的时候,新的结果为:
$$c_i=\sum_{j=0}^{i}a_jb_{i-j}$$
显然就是一个多项式卷积直接$FFT$即可。
初始情况就是对于每一个颜色,设$cnt_i$为颜色$i$的出现次数,那么该颜色下标范围为$0\cdots cnt_i$,值全部为$1$。
然后我们只需要启发式合并几下就可以了。
启发式合并用小根堆来维护$vector$,保存的是编号,关键字是$.size()$,用$vector$来存储计算结果防$MLE$。
注意再开始的时候处理掉某种颜色出现次数为$0$的情况,不然会挂。
时间复杂度$O(n\log^2 n)$。
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=1<<18,mod=1009;
double PI=acos(-1.0);
int n,m,k,tot[N];
struct C{
double r,i;
C(){}
C(double a,double b){r=a,i=b;}
C operator + (C x){return C(r+x.r,i+x.i);}
C operator - (C x){return C(r-x.r,i-x.i);}
C operator * (C x){return C(r*x.r-i*x.i,r*x.i+i*x.r);}
}w[N],A[N],B[N];
int R[N];
vector <int> colors[N<<1];
struct cmp{
bool operator ()(int a,int b){
return colors[a].size()>colors[b].size();
}
};
priority_queue <int,vector<int>,cmp> heap;
void FFT(C a[],int n){
for (int i=0;i<n;i++)
if (i<R[i])
swap(a[i],a[R[i]]);
for (int t=n>>1,d=1;d<n;d<<=1,t>>=1)
for (int i=0;i<n;i+=(d<<1))
for (int j=0;j<d;j++){
C tmp=w[t*j]*a[i+j+d];
a[i+j+d]=a[i+j]-tmp;
a[i+j]=a[i+j]+tmp;
}
}
void FFT_times(vector <int> &a,vector <int> &b,vector <int> &c){
int n,d;
for (int i=0;i<a.size();i++)
A[i]=C(a[i],0);
for (int i=0;i<b.size();i++)
B[i]=C(b[i],0);
for (n=1,d=0;n<a.size()+b.size()-1;n<<=1,d++);
for (int i=0;i<n;i++){
R[i]=(R[i>>1]>>1)|((i&1)<<(d-1));
w[i]=C(cos(2*PI*i/n),sin(2*PI*i/n));
}
for (int i=a.size();i<n;i++)
A[i]=C(0,0);
for (int i=b.size();i<n;i++)
B[i]=C(0,0);
FFT(A,n),FFT(B,n);
for (int i=0;i<n;i++)
A[i]=A[i]*B[i],w[i].i*=-1.0;
FFT(A,n);
c.clear();
for (int i=0;i<=a.size()+b.size()-2;i++)
c.push_back(((LL)(A[i].r/n+0.5))%mod);
}
int main(){
scanf("%d%d%d",&n,&m,&k);
for (int i=1,x;i<=n;i++)
scanf("%d",&x),tot[x]++;
while (!heap.empty())
heap.pop();
int size=0;
for (int i=1;i<=m;i++){
if (tot[i]==0)
continue;
colors[++size].clear();
for (int j=0;j<=tot[i];j++)
colors[size].push_back(1);
heap.push(size);
}
while (heap.size()>=2){
int x=heap.top();
heap.pop();
int y=heap.top();
heap.pop();
FFT_times(colors[x],colors[y],colors[++size]);
colors[x].clear(),colors[y].clear();
heap.push(size);
}
printf("%d",colors[size][k]);
return 0;
}
CodeForces 958F3 Lightsabers (hard) 启发式合并/分治 多项式 FFT的更多相关文章
- Codeforces 965E Short Code 启发式合并 (看题解)
Short Code 我的想法是建出字典树, 然后让后面节点最多的点优先向上移到不能移为止, 然后gg. 正确做法是对于当前的节点如果没有被占, 那么从它的子树中选出一个深度最大的点换到当前位置. 用 ...
- codeforces 600E. Lomsat gelral 启发式合并
题目链接 给一颗树, 每个节点有初始的颜色值. 1为根节点.定义一个节点的值为, 它的子树中出现最多的颜色的值, 如果有多种颜色出现的次数相同, 那么值为所有颜色的值的和. 每一个叶子节点是一个map ...
- Lomsat gelral CodeForces - 600E (树上启发式合并)
You are given a rooted tree with root in vertex 1. Each vertex is coloured in some colour. Let's cal ...
- UOJ#23. 【UR #1】跳蚤国王下江南 仙人掌 Tarjan 点双 圆方树 点分治 多项式 FFT
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ23.html 题目传送门 - UOJ#23 题意 给定一个有 n 个节点的仙人掌(可能有重边). 对于所有 ...
- BZOJ3451 Tyvj1953 Normal 点分治 多项式 FFT
原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ3451.html 题目传送门 - BZOJ3451 题意 给定一棵有 $n$ 个节点的树,在树上随机点分 ...
- Codeforces 438E. The Child and Binary Tree 多项式,FFT
原文链接www.cnblogs.com/zhouzhendong/p/CF438E.html 前言 没做过多项式题,来一道入门题试试刀. 题解 设 $a_i$ 表示节点权值和为 $i$ 的二叉树个数, ...
- BZOJ4836 [Lydsy1704月赛]二元运算 分治 多项式 FFT
原文链接http://www.cnblogs.com/zhouzhendong/p/8830036.html 题目传送门 - BZOJ4836 题意 定义二元运算$opt$满足 $$x\ opt\ y ...
- Educational Codeforces Round 2 E. Lomsat gelral 启发式合并map
E. Lomsat gelral Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/600/prob ...
- codeforces 741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths(启发式合并)
codeforces 741D Arpa's letter-marked tree and Mehrdad's Dokhtar-kosh paths 题意 给出一棵树,每条边上有一个字符,字符集大小只 ...
随机推荐
- Go语言中的Iota
一.复习常量 提到Iota这个关键字,就必须要复习一下Go语言的常量. 1.Go语言的常量一般使用const声明 2.Go语言的常量只能是布尔型.数字型(整数型.浮点型和复数)和字符串型 3.Go语言 ...
- 【转】如何在 GitHub 上找到你要的代码?
[来源]
- MongoDB用户及数据库管理命令
1.用户管理: 连接数据库: mongo 127.0.0.1:27017 切换到admin数据库: > use admin 创建管理员账户: db.createUser( { user: &qu ...
- 使用WebClient进行文件上传
注释部分为异步上传,几行代码就能搞定 public static bool Upload(string url, string path) { using (WebClient client = ne ...
- SPFA+SLF+LLL
关于SLF优化 朴素SPFA使用常规队列(FIFO)更新距离,并没有考虑优化出队顺序(dis值小的优先出队)可以在一开始就把各个点的dis值限值小,从而避免大量的松弛操作,从而提高效率.这就是SLF( ...
- Vim使用技巧:常用光标跳转命令
Vim中的命令多如牛毛,按需学习才是唯一出路.这里总结了几个常用的光标跳转命令. 基本移动: h(往左) j(往下) k(往上) l(小写字母l,往右) 行间移动: 快速跳至文件末行:G(大写字母G) ...
- [物理学与PDEs]第1章习题6 无限长载流直线的磁场
试计算电流强度为 $I$ 的无限长的直导线所产生的磁场的磁感强度. 解答: 设 $P$ 到直线的距离为 $r$, 垂足为 $P_0$, 则 ${\bf B}(P)$ 的方向为 ${\bf I}\tim ...
- 使用 MERGE 语句实现增删改
Ø 简介 在平常编写增删改的 SQL 语句时,我们用的最多的就是 INSERT.UPDATE 和 DELETE 语句,这是最基本的增删改语句.其实,SQL Server 中还有另外一个可以实现增删改 ...
- JavaScript 的正则也有单行模式了
正则表达式最早是由 Ken Thompson 于 1970 年在他改进过的 QED 编辑器里实现的,正则里最简单的元字符 “.” 在当时所匹配的就是除换行符外的任意字符: "." ...
- SpringMVC核心类和注解
springMVC最重要的就是前端控制器DispatchServlet了.他是整个springMVC应用的核心. 需要将它配置在web.xml中. 1.DispatchServlet的配置 <! ...