p3302 [SDOI2013]森林(树上主席树+启发式合并)
对着题目yy了一天加上看了一中午题解,终于搞明白了我太弱了
连边就是合并线段树,把小的集合合并到大的上,可以保证规模至少增加一半,复杂度可以是\(O(logn)\)
合并的时候暴力dfs修改倍增数组和维护主席树即可
然后树上主席树就是维护节点到根节点的信息即可,
询问链上的第k大时,画图后可以发现维护一个rootx,rooty,rootlca和rootfalca即可解决问题
注意空间要开够
然后注意细节,没了
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int vis[100000],root[100000],fa[100000],jump[100000][19],sonnum[100000],u[100000<<2],v[100000<<2],fir[100000],nxt[100000<<2],cnt,dep[100000],midax[100000],w_p[100000],n,m,T,Nodecnt,testcase;
const int MAXlog = 18;
int lastans=0,nx;
struct PTNode{
int sz,lson,rson;
}PT[100000 * 100];
void addedge(int ui,int vi){
++cnt;
u[cnt]=ui;
v[cnt]=vi;
nxt[cnt]=fir[ui];
fir[ui]=cnt;
}
int findroot(int x){
return (fa[x]==x)?x:fa[x]=findroot(fa[x]);
}
int query(int L,int R,int xroot,int yroot,int lcaroot,int falcaroot,int kth){
if(L==R)
return L;
int mid=(L+R)>>1,lch=PT[PT[xroot].lson].sz+PT[PT[yroot].lson].sz-PT[PT[lcaroot].lson].sz-PT[PT[falcaroot].lson].sz;
if(lch<kth)
return query(mid+1,R,PT[xroot].rson,PT[yroot].rson,PT[lcaroot].rson,PT[falcaroot].rson,kth-lch);
else
return query(L,mid,PT[xroot].lson,PT[yroot].lson,PT[lcaroot].lson,PT[falcaroot].lson,kth);
}
void insert(int L,int R,int &now,int c){
PT[++Nodecnt]=PT[now];
now=Nodecnt;
PT[now].sz++;
if(L==R)
return;
int mid=(L+R)>>1;
if(c<=mid)
insert(L,mid,PT[now].lson,c);
else
insert(mid+1,R,PT[now].rson,c);
}
void dfs(int u,int father,int d,int rootu){
dep[u]=d;
vis[u]=1;
fa[u]=father;
jump[u][0]=father;
sonnum[rootu]++;
for(int i=1;i<=MAXlog;i++)
jump[u][i]=jump[jump[u][i-1]][i-1];
int pos = lower_bound(midax+1,midax+nx+1,w_p[u])-midax;
root[u]=root[father];
insert(1,nx,root[u],pos);
for(int i=fir[u];i;i=nxt[i]){
if(v[i]==father)
continue;
dfs(v[i],u,d+1,rootu);
}
}
int lca(int x,int y){
if(dep[x]<dep[y])
swap(x,y);
for(int i=MAXlog;i>=0;i--)
if(dep[x]-(1<<i)>=dep[y])
x=jump[x][i];
if(x==y)
return x;
for(int i=MAXlog;i>=0;i--)
if(jump[x][i]!=jump[y][i])
x=jump[x][i],y=jump[y][i];
return jump[x][0];
}
void link(int x,int y){
addedge(x,y);
addedge(y,x);
int rootx=findroot(x);
int rooty=findroot(y);
if(sonnum[rootx]<sonnum[rooty])
swap(x,y),swap(rootx,rooty);
dfs(y,x,dep[x]+1,rootx);
x+=sonnum[y];
}
int main(){
scanf("%d",&testcase);
scanf("%d %d %d",&n,&m,&T);
for(int i=1;i<=n;i++)
scanf("%d",&w_p[i]),midax[i]=w_p[i],fa[i]=i;
nx=unique(midax+1,midax+n+1)-midax-1;
sort(midax+1,midax+nx+1);
for(int i=1;i<=m;i++){
int a,b;
scanf("%d %d",&a,&b);
addedge(a,b);
addedge(b,a);
}
for(int i=1;i<=n;i++)
if(!vis[i]){
dfs(i,0,0,i);
fa[i]=i;
}
for(int i=1;i<=T;i++){
char opt=getchar();
while(opt!='Q'&&opt!='L')
opt=getchar();
if(opt=='Q'){
int x,y,k;
scanf("%d %d %d",&x,&y,&k);
x^=lastans;
y^=lastans;
k^=lastans;
// printf("lca(%d,%d) = %d\n",x,y,lca(x,y));
lastans=midax[query(1,nx,root[x],root[y],root[lca(x,y)],root[jump[lca(x,y)][0]],k)];
printf("%d\n",lastans);
}
else{
int x,y;
scanf("%d %d",&x,&y);
x^=lastans;
y^=lastans;
link(x,y);
}
}
return 0;
}
p3302 [SDOI2013]森林(树上主席树+启发式合并)的更多相关文章
- P3302 [SDOI2013]森林(主席树+启发式合并)
P3302 [SDOI2013]森林 主席树+启发式合并 (我以前的主席树板子是错的.......坑了我老久TAT) 第k小问题显然是主席树. 我们对每个点维护一棵包含其子树所有节点的主席树 询问(x ...
- bzoj3123 [Sdoi2013]森林 树上主席树+启发式合并
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3123 题解 如果是静态的查询操作,那么就是直接树上主席树的板子. 但是我们现在有了一个连接两棵 ...
- BZOJ_3123_[Sdoi2013]森林_主席树+启发式合并
BZOJ_3123_[Sdoi2013]森林_主席树+启发式合并 Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20 ...
- BZOJ2123 [Sdoi2013]森林 【主席树 + 启发式合并】
题目 输入格式 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数.第三行包含N个非负 ...
- bzoj 3123 [Sdoi2013]森林(主席树+启发式合并+LCA)
Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数 ...
- [luoguP3302] [SDOI2013]森林(主席树 + 启发式合并 + lca)
传送门 显然树上第k大直接主席树 如果连边的话,我们重构小的那一棵,连到另一棵上. 说起来简单,调了我一晚上. 总的来说3个错误: 1.离散化写错位置写到了后面 2."="写成了& ...
- [bzoj3123][洛谷P3302] [SDOI2013]森林(树上主席树+启发式合并)
传送门 突然发现好像没有那么难……https://blog.csdn.net/stone41123/article/details/78167288 首先有两个操作,一个查询,一个连接 查询的话,直接 ...
- [bzoj3123][sdoi2013森林] (树上主席树+lca+并查集启发式合并+暴力重构森林)
Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数 ...
- 【BZOJ-3123】森林 主席树 + 启发式合并
3123: [Sdoi2013]森林 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2738 Solved: 806[Submit][Status] ...
随机推荐
- 06 str() bytes() 编码转换
x = str() #创建字符串#转换成字符串,字节,编码 m = bytes()#创建字节#转换成字节,字符串,要编程什么编码类型的字节 a = "李露" b1 = bytes( ...
- RobotFrameWork(一)robotfamework(python版)及Ride在windows安装
1.windows下的安装 (1)准备条件: python-2.7.3.msi robotframework-2.7.5.win32.exe wxPython2.8-win32-unicode-2.8 ...
- mac下编译cpu only caffe并用xCode建caffe工程
mac编译caffe 好像又变容易了,直接git clone下载blvc源码,make.config里去掉了CPU_ONLY前面的注释,并没有安装任何依赖,也可能是自己mac上本来有, xCode里调 ...
- CBV源码解析
1.CBV(class based view) 首先定义一个视图函数,用类的方式定义: 举例: class LoginView(View): def get(self,request): return ...
- HDU 2064 汉诺塔III (递推)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2064 约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下.由小到 ...
- .NET 常用ORM之Gentle.Net
.Net常用的就是微软的EF框架和Nhibernate,这两个框架用的都比较多就不做详细介绍了,今天我们来看看Gentle.Net,Gentle.Net是一个开源的优秀O/R Mapping的对象持久 ...
- 3D模型文字动画
<!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...
- MySQL底层索引剖析
1:Mysql索引是什么 mysql索引: 是一种帮助mysql高效的获取数据的数据结构,这些数据结构以某种方式引用数据,这种结构就是索引.可简单理解为排好序的快速查找数据结构.如果要查“mysql” ...
- mysql数据库介绍
一.数据库概述 二.MySql安装和基本管理 三.mysql基本语句 四.库的操作 五.表的操作 六.数据类型 七.数据类型二 八.完整性约束 九.外键的变种 三种关系 十.数据的增删改 十一.多表查 ...
- EDK II之DXE Core的事件管理
本文简单介绍一下UEFI中的事件管理: UEFI是不支持多进程的,但是UEFI支持多事件分发机制.UEFI只支持时钟中断,并基于时钟中断实现事件分发.类似于OS中基于时钟中断来实现基于时间片的多任务调 ...