传送门

国王游戏一样的分析

考虑相邻的两个大臣,设他们前面的\(\sum a_j\)为\(s\),同时注意到后面人的贡献更大

所以\(i\)在前面时,\(c_j=\max(\max(c_{last},s+a_i)+b_i,s+a_i+a_j)+b_j\)

\(j\)在前面时,\(c_i=\max(\max(c_{last},s+a_j)+b_j,s+a_i+a_j)+b_i\)

如果最优方案里\(i\)在\(j\)前面,则刚才的\(c_j<c_i\)

即$$\max(\max(c_{last},s+a_i)+b_i,s+a_i+a_j)+b_j<\max(\max(c_{last},s+a_j)+b_j,s+a_i+a_j)+b_i$$$$\max(c_{last}+b_i+b_j,s+a_i+b_i+b_j,s+a_i+a_j+b_j)<\max(c_{last}+b_j+b_i,s+a_j+b_j+b_i,s+a_i+a_j+b_i)$$$$\max(a_i+b_i+b_j,a_i+a_j+b_j)<\max(a_j+b_j+b_i,a_i+a_j+b_i)$$$$\max(b_i,a_j)+a_i+b_j<\max(b_j,a_i)+a_j+b_i$$$$\max(a_j,b_i)-a_j-b_i<\max(a_i,b_j)-a_i-b_j$$

这时左右两边分别等价于\(-\min(a_j,b_i),-\min(a_i,b_j)\),进一步化简得\(\min(a_i,b_j)<\min(a_j,b_i)\)

然后直接这样做就可以了

吗?

其实布星,这个条件不满足传递性,导致可能多次交换后使得后面结果变大 具体是什么我也讲不清

观察条件\(\min(a_i,b_j)<\min(a_j,b_i)\),这是要我们把\(a\)小的,\(b\)大的放前面,同时考虑\(a,b\)大小关系

对于所有\(a<b\)的,就按\(a\)升序排序

对于所有\(a>b\)的,就按\(b\)降序排序

\(a=b\)好像是用脚随便放( 就直接和第一种情况合并救星了

对于所有情况,考虑\(a_i<b_i\ a_j>b_j\),根据\(\min(a_i,b_j)<\min(a_j,b_i)\),则显然是把\(a<b\)的放在\(a>b\)的之前

总结:记\(d_i=\min(a_i,b_i)\)然后对三元组\(\{a_i,b_i,d_i\}\)按\(d_i\)升序排序,然后如果\(a_i=d_i\)放前面,否则放后面

#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register
#define db double
#define eps (1e-5) using namespace std;
const int N=20000+10;
il LL rd()
{
re LL x=0,w=1;re char ch;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
struct nn
{
int d,a,b;
bool operator < (const nn &bb) const {return d<bb.d;}
}z[N];
LL n,a[N],b[N],c[N]; int main()
{
int T=rd();
while(T--)
{
n=rd();
for(int i=1;i<=n;i++)
{
int x=rd(),y=rd();
z[i].a=x,z[i].b=y,z[i].d=min(x,y);
}
sort(z+1,z+n+1);
for(int i=1,l=1,r=n;i<=n;i++)
{
if(z[i].d==z[i].a) a[l]=z[i].a,b[l]=z[i].b,++l;
else a[r]=z[i].a,b[r]=z[i].b,--r;
}
c[1]=a[1]+b[1];
LL su=a[1];
for(int i=2;i<=n;i++)
{
su+=a[i];
c[i]=max(c[i-1],su)+b[i];
}
printf("%lld\n",c[n]);
}
return 0;
}

luogu P2123 皇后游戏的更多相关文章

  1. Luogu P2123 皇后游戏(贪心)

    题目链接:P2123 皇后游戏 如果证明这个题为什么是贪心的话,我是不会的,但是一看这个题目就是一个贪心,然后满足贪心的性质: 都能从两个人(东西)扩展到n个人(东西) 一定能从相邻状态扩展到不相邻的 ...

  2. [luogu P2123] 皇后游戏 解题报告(贪心)

    题目链接:https://www.luogu.org/problemnew/show/P2123 题目大意: 给定a数组和b数组,要求最小化c数组中的最大值 题解: 考虑微扰法,推一波式子先 设$x= ...

  3. 洛谷 P2123 皇后游戏 解题报告

    P2123 皇后游戏 题意: 给定\(T\)组长为\(n\)的\(A\),\(B\)数组和\(C\)的计算方法,求一种排列方法,使最大的\(C\)最小化. 数据范围: \(1 \le T \le 10 ...

  4. 【流水调度问题】【邻项交换对比】【Johnson法则】洛谷P1080国王游戏/P1248加工生产调度/P2123皇后游戏/P1541爬山

    前提说明,因为我比较菜,关于理论性的证明大部分是搬来其他大佬的,相应地方有注明. 我自己写的部分换颜色来便于区分. 邻项交换对比是求一定条件下的最优排序的思想(个人理解).这部分最近做了一些题,就一起 ...

  5. P2123 皇后游戏

    题目背景 还记得 NOIP 2012 提高组 Day1 的国王游戏吗?时光飞逝,光阴荏苒,两年 过去了.国王游戏早已过时,如今已被皇后游戏取代,请你来解决类似于国王游 戏的另一个问题. 题目描述 皇后 ...

  6. [洛谷P2123]皇后游戏

    很抱歉,这个题我做的解法不是正解,只是恰巧卡了数据 目前数据已经更新,这个题打算过一段时间再去写. 目前在学习DP,这个会暂时放一放,很抱歉 这个题是一个国王游戏的变形(国王游戏就把我虐了qwq) 题 ...

  7. luoguP2123 皇后游戏——微扰法的应用与排序传递性的证明

    题目背景 还记得 NOIP 2012 提高组 Day1 的国王游戏吗?时光飞逝,光阴荏苒,两年 过去了.国王游戏早已过时,如今已被皇后游戏取代,请你来解决类似于国王游 戏的另一个问题. 题目描述 皇后 ...

  8. [luogu]P1070 道路游戏[DP]

    [luogu]P1070 道路游戏 题目描述小新正在玩一个简单的电脑游戏.游戏中有一条环形马路,马路上有 n 个机器人工厂,两个相邻机器人工厂之间由一小段马路连接.小新以某个机器人工厂为起点,按顺时针 ...

  9. [Luogu P3825] [NOI2017] 游戏 (2-SAT)

    [Luogu P3825] [NOI2017] 游戏 (2-SAT) 题面 题面较长,略 分析 看到这些约束,应该想到这是类似2-SAT的问题.但是x地图很麻烦,因为k-SAT问题在k>2的时候 ...

随机推荐

  1. 荣耀实锤Magic2或将助力AI,再次带动成长?

    临近年底,热闹了一年的手机圈纷纷偃旗息鼓,准备为明年3月的新品发力.然而今天(12月7日),恰逢节气大雪,@荣耀手机 在微博发布了一张预热海报,随后荣耀总裁赵明转发这条微博表示「关于技术,真的有很多话 ...

  2. pgm12

    作为 inference 部分的小结,我们这里对 machine learning 里面常见的三个 model 的 inference 问题进行整理,当然很幸运的是他们都存在 tractable 的算 ...

  3. [IOI2018]排座位——线段树

    题目链接: IOI2018seat 题目大意:给出一个$H*W$的矩阵,将$0 \sim W*H-1$分别填入矩阵的格子里(每个格子里一个数),定义一个子矩阵是美妙的当且仅当这个子矩阵包含且仅包含$0 ...

  4. Java中子类和父类相关方法的执行顺序

    无意中看到下面一个题目,大家一起来看看最后的输出结果是什么.反正我看完之后,用IDE测试后感觉知识点得到巩固了. /** * 函数执行顺序测试 * Created by 萌小Q on 2017/5/1 ...

  5. hdu5521(Meeting)spfa 层次网络最短路

    题意:给出几个集合,每个集合中有Si个点 且任意两个点的距离为ti,现在要求两个人分别从1和n出发,问最短多长时间才能遇到,且给出这些可能的相遇点; 取两个人到达某点时所用时间大的值 然后取最小的   ...

  6. windows下安装PyTorch0.4.0

    PyTorch框架,据说2018.4.25刚刚上架windows,安个玩玩 我的环境: windows 10 anaconda虚拟环境python3.6 cuda9.1 cudnn7 pytorch  ...

  7. 洛谷P3345 [ZJOI2015]幻想乡战略游戏(动态点分治,树的重心,二分查找,Tarjan-LCA,树上差分)

    洛谷题目传送门 动态点分治小白,光是因为思路不清晰就耗费了不知道多少时间去gang这题,所以还是来理理思路吧. 一个树\(T\)里面\(\sum\limits_{v\in T} D_vdist(u,v ...

  8. 【BZOJ3811】玛里苟斯(线性基)

    [BZOJ3811]玛里苟斯(线性基) 题面 BZOJ 题解 \(K=1\)很容易吧,拆位考虑贡献,所有存在的位出现的概率都是\(0.5\),所以答案就是所有数或起来的结果除二. \(K=2\)的情况 ...

  9. 【Codeforces 98E】 Help Shrek and Donkey

    http://codeforces.com/problemset/problem/98/E (题目链接) 题意 A君有n张牌,B君有m张牌,桌上还有一张反扣着的牌,每张牌都不一样. 每个回合可以做两件 ...

  10. 迅雷thunder://协议解密

    echo -n 'thunder://''Cg==' | sed 's?thunder://??' | base64 -d | sed 's/^AA//; s/ZZ$//' 将thunder://替换 ...