前提:秘钥长度=1024

==============================================

    对一片(117字节)明文加密

==============================================

// 公钥加密
std::string rsa_pub_encrypt(const std::string &clearText, std::string &pubKey)
{
std::string strRet;
BIO *keybio = BIO_new_mem_buf((unsigned char *)pubKey.c_str(), -);
//keybio = BIO_new_mem_buf((unsigned char *)strPublicKey.c_str(), -1);
// 此处有三种方法
// 1, 读取内存里生成的密钥对,再从内存生成rsa
// 2, 读取磁盘里生成的密钥对文本文件,在从内存生成rsa
// 3,直接从读取文件指针生成rsa
//RSA* pRSAPublicKey = RSA_new();
RSA* rsa = RSA_new();
rsa = PEM_read_bio_RSAPublicKey(keybio, &rsa, NULL, NULL);
if (!rsa)
{
BIO_free_all(keybio);
return std::string("");
} int len = RSA_size(rsa);
//int len = 1028;
char *encryptedText = (char *)malloc(len + );
memset(encryptedText, , len + ); // 加密函数
int ret = RSA_public_encrypt(clearText.length(), (const unsigned char*)clearText.c_str(), (unsigned char*)encryptedText, rsa, RSA_PKCS1_PADDING);
if (ret >= )
strRet = std::string(encryptedText, ret); // 释放内存
free(encryptedText);
BIO_free_all(keybio);
RSA_free(rsa); return strRet;
}

==============================================

    对一片(128字节)密文解密

==============================================

// 私钥解密
std::string rsa_pri_decrypt(const std::string &cipherText, const std::string &priKey)
{
std::string strRet;
RSA *rsa = RSA_new();
BIO *keybio;
keybio = BIO_new_mem_buf((unsigned char *)priKey.c_str(), -); // 此处有三种方法
// 1, 读取内存里生成的密钥对,再从内存生成rsa
// 2, 读取磁盘里生成的密钥对文本文件,在从内存生成rsa
// 3,直接从读取文件指针生成rsa
rsa = PEM_read_bio_RSAPrivateKey(keybio, &rsa, NULL, NULL); int len = RSA_size(rsa);
char *decryptedText = (char *)malloc(len + );
memset(decryptedText, , len + ); // 解密函数
int ret = RSA_private_decrypt(cipherText.length(), (const unsigned char*)cipherText.c_str(), (unsigned char*)decryptedText, rsa, RSA_PKCS1_PADDING);
if (ret >= )
strRet = std::string(decryptedText, ret); // 释放内存
free(decryptedText);
BIO_free_all(keybio);
RSA_free(rsa); return strRet;
}

注:工作中只用到了 rsa私加公解,因此没有 针对全部明文的公加私解的代码实现,请参考附录。

附:rsa 私加公解

RSA加解密 公钥加密私钥解密 公加私解 && C++ 调用openssl库 的代码实例的更多相关文章

  1. RSA加解密 私钥加密公钥解密 私加公解 && C++ 调用openssl库 的代码实例

    前提:秘钥长度=1024 ============================================== 对一片(117字节)明文加密  私加 ===================== ...

  2. RSA 加密算法 Java 公钥加密私钥解密 和 私钥加密公钥解密 的特点

    package com.smt.cipher.unsymmetry; import org.apache.commons.codec.binary.Base64; import org.apache. ...

  3. RSA加解密工具类RSAUtils.java,实现公钥加密私钥解密和私钥解密公钥解密

    package com.geostar.gfstack.cas.util; import org.apache.commons.codec.binary.Base64; import javax.cr ...

  4. RSA不对称加密,公钥加密私钥解密,私钥加密公钥解密

    RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作. RSA是被研究得最广泛的公钥算法,从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一 ...

  5. C# 基于大整数类的RSA算法实现(公钥加密私钥解密,私钥加密公钥解密)

    但是C#自带的RSA算法类RSACryptoServiceProvider只支持公钥加密私钥解密,即数字证书的使用. 所以参考了一些网上的资料写了一个RSA的算法实现.算法实现是基于网上提供的一个大整 ...

  6. 使用Base64进行string的加密和解密 公钥加密—私钥签名

    使用Base64进行string的加密和解密   //字符串转bytesvar ebytes = System.Text.Encoding.Default.GetBytes(keyWord);//by ...

  7. C#中使用OpenSSL的公钥加密/私钥解密

    在C#中进行公钥加密/私钥解密,需要用RSACryptoServiceProvider,但是它不支持由OpenSSL生成的公钥/私钥字符串. 比如这样的公钥/私钥对( 公私钥生成方法见 http:// ...

  8. NetCore 生成RSA公私钥对,公钥加密私钥解密,私钥加密公钥解密

    using Newtonsoft.Json; using Org.BouncyCastle.Crypto; using Org.BouncyCastle.Crypto.Encodings; using ...

  9. OpenSSL和Python实现RSA Key公钥加密私钥解密

    基于非对称算法的RSA Key主要有两个用途,数字签名和验证(私钥签名,公钥验证),以及非对称加解密(公钥加密,私钥解密).本文提供一个基于OpenSSL和Python进行非对称加解密的例子. 1. ...

随机推荐

  1. 【魔改】树状数组 牛客多校第五场I vcd 几何+阅读理解

    https://www.nowcoder.com/acm/contest/143/I vc-dimension 题解:分三种情况,组合数学算一下,其中一种要用树状数组维护 技巧(来自UESTC):1. ...

  2. role="navigation"

    HTML5的标签属性,可以用于标识一个普通的标签,使之语义化,方便浏览器对其具体功能进行识别. 例如div容器制作的导航栏,加上role="navigation",就可以让浏览器知 ...

  3. [daily][mirror][daemonlogger][tc] 我想把一个网卡(port A)的流量,镜像到虚拟机的一个网卡(port VA)上去

    iptables tee 模块 https://blog.gnuers.org/?p=740 http://blog.csdn.net/wesleyflagon/article/details/385 ...

  4. 最大似然估计(Maximum likelihood estimation)(通过例子理解)

    似然与概率 https://blog.csdn.net/u014182497/article/details/82252456 在统计学中,似然函数(likelihood function,通常简写为 ...

  5. 使用Python + Selenium打造浏览器爬虫

    Selenium 是一款强大的基于浏览器的开源自动化测试工具,最初由 Jason Huggins 于 2004 年在 ThoughtWorks 发起,它提供了一套简单易用的 API,模拟浏览器的各种操 ...

  6. onload和DOMContentLoaded

    执行时间 onload必须等到页面内包括图片的所有元素加载完毕后才能执行. DOMContentLoaded是DOM结构绘制完毕后就执行,不必等到加载完毕. 编写个数不同 onload不能同时编写多个 ...

  7. 哨兵模式下,master选举关键点

    哨兵模式下的选举策略: 1:slave priority越低 ,优先级越高 2:1同等情况下,slave复制的数据越多优先级越高 3:2相同的条件下run id越小越容易被选举

  8. linux下tomcat启动没有日志,没有进程,没有报错,没有监听端口

    可以试试运行catalina.sh run,这个命令会让tomcat在终端打印日志.

  9. django上下文处理器

    上下文处理器(context processors)上下文处理器是可以返回一些数据,在全局模板中都可以使用.比如登录后的用户信息,在很多页面中都需要使用,那么我们可以放在上下文处理器中,就没有必要在每 ...

  10. 洛谷P4198 楼房重建 单调栈+线段树

    正解:单调栈+线段树 解题报告: 传送门! 首先考虑不修改的话就是个单调栈板子题昂,这个就是 然后这题的话,,,我怎么记得之前考试好像有次考到了类似的题目昂,,,?反正我总觉着这方法似曾相识的样子,, ...