Codeforces E - Connected Components?
思路:
补图bfs,将未访问的点存进set里
代码:
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pb push_back
#define mem(a,b) memset(a,b,sizeof(a)) const int N=2e5+;
bool vis[N];
int head[N];
int a[N];
int cnt=,ans=;
struct edge{
int to,next;
}edge[N*];
inline add_edge(int u,int v){
edge[cnt].to=v;
edge[cnt].next=head[u];
head[u]=cnt++;
}
inline bfs(int n){
set<int>s;
set<int>st;
queue<int>q;
for(int i=;i<=n;i++){
s.insert(i);
}
for(int i=;i<=n;i++){
if(!vis[i]){
s.erase(i),q.push(i),vis[i]=true,a[++ans]++;
while(!q.empty()){
int u=q.front();
q.pop();
for(int j=head[u];~j;j=edge[j].next){
int v=edge[j].to;
if(s.count(v)==)continue;
s.erase(v);
st.insert(v);
}
for(set<int>::iterator it=s.begin();it!=s.end();it++){
if(!vis[*it])q.push(*it),vis[*it]=true;
a[ans]++;
}
s.swap(st);
st.clear();
}
}
}
}
int main(){
ios::sync_with_stdio(false);
cin.tie();
int n,m,u,v;
mem(head,-);
cin>>n>>m;
for(int i=;i<m;i++){
cin>>u>>v;
add_edge(u,v);
add_edge(v,u);
}
bfs(n);
sort(a+,a++ans);
cout<<ans<<endl;
for(int i=;i<=ans;i++)cout<<a[i]<<' ';
cout<<endl;
return ;
}
Codeforces E - Connected Components?的更多相关文章
- [Codeforces 920E]Connected Components?
Description 题库链接 给你一个 \(n\) 个点 \(m\) 条边的无向图,求其补图的连通块个数及各个连通块大小. \(1\leq n,m\leq 200000\) Solution 参考 ...
- CodeForces 292D Connected Components (并查集+YY)
很有意思的一道并查集 题意:给你n个点(<=500个),m条边(<=10000),q(<=20000)个询问.对每个询问的两个值xi yi,表示在从m条边内删除[xi,yi]的边后 ...
- Codeforces 920E Connected Components? 补图连通块个数
题目链接 题意 对给定的一张图,求其补图的联通块个数及大小. 思路 参考 ww140142. 维护一个链表,里面存放未归入到任何一个连通块中的点,即有必要从其开始进行拓展的点. 对于每个这样的点,从它 ...
- Educational Codeforces Round 37 E. Connected Components?(图论)
E. Connected Components? time limit per test 2 seconds memory limit per test 256 megabytes input sta ...
- Codeforces 920 E Connected Components?
Discription You are given an undirected graph consisting of n vertices and edges. Instead of giving ...
- Educational Codeforces Round 37 (Rated for Div. 2) E. Connected Components? 图论
E. Connected Components? You are given an undirected graph consisting of n vertices and edges. Inste ...
- [LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- PTA Strongly Connected Components
Write a program to find the strongly connected components in a digraph. Format of functions: void St ...
- LeetCode Number of Connected Components in an Undirected Graph
原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/ 题目: Giv ...
随机推荐
- JS截取字符串中数字
今天项目中需要在一个字符串中截取一个数字,然后数字参与运算.搜了一下,有好多好用的方式截取字符串. 1,使用parseInt() var str ="4500元"; var num ...
- HTTP小幺鸡接口管理工具安装与配置说明
http://www.xiaoyaoji.cn/doc/TxybXPTdx 小幺鸡接口管理工具安装说明 使用可以参考:https://blog.csdn.net/qincidong/article/d ...
- 2018-2019-1 20189206 vim.c插件安装
vim插件安装 vim插件安装 由于今天在安装vim.c插件耗费了很多时间,配置文件一直不生效,特此记录以下安装插件的方法. 安装vim.c按照博客的方法 第一步:创建目录~/.vim 这个目录是用来 ...
- 51Nod 1667 概率好题 - 容斥原理
题目传送门 无障碍通道 有障碍通道 题目大意 若$L_{i}\leqslant x_{i} \leqslant R_{i}$,求$\sum x_{i} = 0$以及$\sum x_{i} < 0 ...
- bzoj1566: [NOI2009]管道取珠 DP
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=1566 思路 n个球,第i个球颜色为ai,对于颜色j,对答案的贡献为颜色为j的球的个数的平 ...
- Docker 使用Dockerfile构建redis镜像
Dockerfile实现: FROM centos: MAINTAINER hongdada "hongdaqi159505@gmail.com" WORKDIR /home RU ...
- (zhuan) How to Train Neural Networks With Backpropagation
this blog from: http://blog.demofox.org/2017/03/09/how-to-train-neural-networks-with-backpropagation ...
- Images之multi-stage builds
原文链接 Use multi-stage builds Multi-stage builds are a new feature requiring Docker 17.05 or higher on ...
- 如何判断一个单向链表是否为回文链表(Palindrome Linked List)
题目:给定一个单向链表,判断它是不是回文链表(即从前往后读和从后往前读是一样的).原题见下图,还要求了O(n)的时间复杂度O(1)的空间复杂度. 我的思考: 1,一看到这个题目,大脑马上想到的解决方案 ...
- js精度误差
之前虽然有看到过 js 精度相关的文章.但也都没有“印象深刻” ,但是今天"有幸"遇到了. 做一个项目,进行页面调试的时候, 当数量增加到3时总价格变得好长好长 立马在控制台验证了 ...