打造云原生大型分布式监控系统(四): Kvass+Thanos 监控超大规模容器集群
概述
继上一篇 Thanos 部署与实践 发布半年多之后,随着技术的发展,本系列又迎来了一次更新。本文将介绍如何结合 Kvass 与 Thanos,来更好的实现大规模容器集群场景下的监控。
有 Thanos 不够吗 ?
有同学可能会问,Thanos 不就是为了解决 Prometheus 的分布式问题么,有了 Thanos 不就可以实现大规模的 Prometheus 监控了吗?为什么还需要个 Kvass?
Thanos 解决了 Prometheus 的分布式存储与查询的问题,但没有解决 Prometheus 分布式采集的问题,如果采集的任务和数据过多,还是会使 Prometheus 达到的瓶颈,不过对于这个问题,我们在系列的第一篇 大规模场景下 Prometheus 的优化手段 中就讲了一些优化方法:
- 从服务维度拆分采集任务到不同 Prometheus 实例。
- 使用 Prometheus 自带的 hashmod 对采集任务做分片。
但是,这些优化方法还是存在一些缺点:
- 配置繁琐,每个 Prometheus 实例的采集配置都需要单独配。
- 需要提前对数据规模做预估才好配置。
- 不同 Prometheus 实例采集任务不同,负载很可能不太均衡,控制不好的话仍然可能存在部分实例负载过高的可能。
- 如需对 Prometheus 进行扩缩容,需要手动调整,无法做到自动扩缩容。
Kvass 就是为了解决这些问题而生,也是本文的重点。
什么是 Kvass ?
Kvass 项目是腾讯云开源的轻量级 Prometheus 横向扩缩容方案,其巧妙的将服务发现与采集过程分离,并用 Sidecar 动态给 Prometheus 生成配置文件,从而达到无需手工配置就能实现不同 Prometheus 采集不同任务的效果,并且能够将采集任务进行负载均衡,以避免部分 Prometheus 实例负载过高,即使负载高了也可以自动扩容,再配合 Thanos 的全局视图,就可以轻松构建只使用一份配置文件的超大规模集群监控系统。下面是 Kvass+Thanos 的架构图:
更多关于 Kvass 的详细介绍,请参考 如何用 Prometheus 监控十万 container 的 Kubernetes 集群 ,文章中详细介绍了原理和使用效果。
部署实践
部署准备
首先下载 Kvass 的 repo 并进入 examples 目录:
git clone https://github.com/tkestack/kvass.git
cd kvass/examples
在部署 Kvass 之前我们需要有服务暴露指标以便采集,我们提供了一个 metrics 数据生成器,可以指定生成一定数量的 series,在本例子中,我们将部署 6 个 metrics 生成器副本,每个会生成 10045 series,将其一键部署到集群:
kubectl create -f metrics.yaml
部署 Kvass
接着我们来部署 Kvass:
kubectl create -f kvass-rbac.yaml # Kvass 所需的 RBAC 配置
kubectl create -f config.yaml # Prometheus 配置文件
kubectl create -f coordinator.yaml # Kvass coordinator 部署配置
其中,config.yaml
的 Prometheus 配置文件,配了对刚才部署的 metrics 生成器的采集:
global:
scrape_interval: 15s
evaluation_interval: 15s
external_labels:
cluster: custom
scrape_configs:
- job_name: 'metrics-test'
kubernetes_sd_configs:
- role: pod
relabel_configs:
- source_labels: [__meta_kubernetes_pod_label_app_kubernetes_io_name]
regex: metrics
action: keep
- source_labels: [__meta_kubernetes_pod_ip]
action: replace
regex: (.*)
replacement: ${1}:9091
target_label: __address__
- source_labels:
- __meta_kubernetes_pod_name
target_label: pod
coordinator.yaml
我们给 Coordinator 的启动参数中设置每个分片的最大 head series 数目不超过 30000:
--shard.max-series=30000
然后部署 Prometheus 实例(包含 Thanos Sidecar 与 Kvass Sidecar),一开始可以只需要单个副本:
kubectl create -f prometheus-rep-0.yaml
如果需要将数据存储到对象存储,请参考上一篇 Thanos 部署与实践 对 Thanos Sidecar 的配置进行修改。
部署 thanos-query
为了得到全局数据,我们需要部署一个 thanos-query:
kubectl create -f thanos-query.yaml
根据上述计算,监控目标总计 6 个 target, 60270 series,根据我们设置每个分片不能超过 30000 series,则预期需要 3 个分片。我们发现,Coordinator 成功将 StatefulSet 的副本数改成了 3。
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
kvass-coordinator-c68f445f6-g9q5z 2/2 Running 0 64s
metrics-5876dccf65-5cncw 1/1 Running 0 75s
metrics-5876dccf65-6tw4b 1/1 Running 0 75s
metrics-5876dccf65-dzj2c 1/1 Running 0 75s
metrics-5876dccf65-gz9qd 1/1 Running 0 75s
metrics-5876dccf65-r25db 1/1 Running 0 75s
metrics-5876dccf65-tdqd7 1/1 Running 0 75s
prometheus-rep-0-0 3/3 Running 0 54s
prometheus-rep-0-1 3/3 Running 0 45s
prometheus-rep-0-2 3/3 Running 0 45s
thanos-query-69b9cb857-d2b45 1/1 Running 0 49s
我们再通过 thanos-query 来查看全局数据,发现数据是完整的(其中 metrics0 为指标生成器生成的指标名):
如果需要用 Grafana 面板查看监控数据,可以添加 thanos-query 地址作为 Prometheus 数据源: http://thanos-query.default.svc.cluster.local:9090
。
小结
本文介绍了如何结合 Kvass 与 Thanos 来实现超大规模容器集群的监控,如果你使用了腾讯云容器服务,可以直接使用运维中心下的 云原生监控
服务,此服务就是基于 Kvass 构建的产品。
【腾讯云原生】云说新品、云研新术、云游新活、云赏资讯,扫码关注同名公众号,及时获取更多干货!!
打造云原生大型分布式监控系统(四): Kvass+Thanos 监控超大规模容器集群的更多相关文章
- 打造云原生大型分布式监控系统系列文章-腾讯工程师roc
附上本系列文章链接 打造云原生大型分布式监控系统(一): 大规模场景下 Prometheus 的优化手段 打造云原生大型分布式监控系统(二): Thanos 架构详解 打造云原生大型分布式监控系统(二 ...
- 重磅!容器集群监控利器 阿里云Prometheus 正式免费公测
Prometheus 作为容器生态下集群监控的首选方案,是一套开源的系统监控报警框架.它启发于 Google 的 borgmon 监控系统,并于 2015 年正式发布.2016 年,Prometheu ...
- vivo 容器集群监控系统架构与实践
vivo 互联网服务器团队-YuanPeng 一.概述 从容器技术的推广以及 Kubernetes成为容器调度管理领域的事实标准开始,云原生的理念和技术架构体系逐渐在生产环境中得到了越来越广泛的应用实 ...
- 分布式缓存技术redis学习系列(四)——redis高级应用(集群搭建、集群分区原理、集群操作)
本文是redis学习系列的第四篇,前面我们学习了redis的数据结构和一些高级特性,点击下面链接可回看 <详细讲解redis数据结构(内存模型)以及常用命令> <redis高级应用( ...
- 分布式缓存技术redis学习(四)——redis高级应用(集群搭建、集群分区原理、集群操作)
本文是redis学习系列的第四篇,前面我们学习了redis的数据结构和一些高级特性,点击下面链接可回看 <详细讲解redis数据结构(内存模型)以及常用命令> <redis高级应用( ...
- 分布式缓存技术redis系列(四)——redis高级应用(集群搭建、集群分区原理、集群操作)
本文是redis学习系列的第四篇,前面我们学习了redis的数据结构和一些高级特性,点击下面链接可回看 <详细讲解redis数据结构(内存模型)以及常用命令> <redis高级应用( ...
- Windows7系统中nginx与IIS服务器搭建集群实现负载均衡
10分钟搭建服务器集群——Windows7系统中nginx与IIS服务器搭建集群实现负载均衡 分布式,集群,云计算机.大数据.负载均衡.高并发······当耳边响起这些词时,做为一个菜鸟程序猿无疑 ...
- Kubernetes容器集群管理环境 - Prometheus监控篇
一.Prometheus介绍之前已经详细介绍了Kubernetes集群部署篇,今天这里重点说下Kubernetes监控方案-Prometheus+Grafana.Prometheus(普罗米修斯)是一 ...
- kubernetes生态--交付prometheus监控及grafana炫酷dashboard到k8s集群
由于docker容器的特殊性,传统的zabbix无法对k8s集群内的docker状态进行监控,所以需要使用prometheus来进行监控: 什么是Prometheus? Prometheus是由Sou ...
随机推荐
- SPI的学习和ESP8266的SPI通讯测试
SPI简介: SPI是串行外设接口(Serial Peripheral Interface)的缩写.SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时 ...
- 基于tensorflow的bilstm_crf的命名实体识别(数据集是msra命名实体识别数据集)
github地址:https://github.com/taishan1994/tensorflow-bilstm-crf 1.熟悉数据 msra数据集总共有三个文件: train.txt:部分数据 ...
- 主动关闭 tcp_timewait_state_process 处理
正常情况下主动关闭连接的一端在连接正常终止后,会进入TIME_WAIT状态,存在这个状态有以下两个原因(参考<Unix网络编程>): 1.保证TCP连接关闭的可靠性.如果最终发送 ...
- 机器学习3《数据集与k-近邻算法》
机器学习数据类型: ●离散型数据:由记录不同类别个体的数目所得到的数据,又称计数数据,所 有这些数据全部都是整数,而且不能再细分,也不能进一步提高他们的精确度. ●连续型数据:交量可以在某个范围内取任 ...
- ceph osd tree的可视化
前言 很久没有处理很大的集群,在接触一个新集群的时候,如果集群足够大,需要比较长的时间才能去理解这个集群的结构,而直接去看ceph osd tree的结果,当然是可以的,这里是把osd tree的结构 ...
- 今天谁也别想阻止我好好学习!「CDR 6·18特惠倒计时2天!」
前几天小编刷抖音,一个以农夫山泉为创作背景的服装原创视频 让我为之一震 这个自称以捡瓶子为生的服装设计师 让我产生了极为浓烈的兴趣 细扒这位小姐姐的视频 她用身边的常见物品 脑洞大开的画出了一系列插画 ...
- 08vue绑定用户页面
1.vue微博回调空页面 注:微博回调空页面为: http://127.0.0.1:8888/oauth/callback/ 1.1 页面路径 components\oauth.vue <tem ...
- iOS 搜索条使用详解
在ios开发中搜索条的使用挺常见的,不过之前一直没用到也没细细研究,最近做外包项目的时候刚好用到,在这里记录一下使用的过程,只要理解了原理,其实还是比较简单的!上传的图片有点大,刚好可以看清楚它的使用 ...
- 聊聊 ClassLoader 是如何查找资源的
ClassLoader作用 classloader这个写业务代码的童鞋们,应该很少用到,但是写框架的应该很熟悉.这个类负责Java底层的类的加载和查找,简单滴说Java 的所有类都是由它负责将clas ...
- Java基础教程——Date类和Calendar类
Date类和Calendar类都是关于日期的类,都在java.util包中,使用时需要import. Date java.util.Date类的对象用来表示时间和日期,用得最多的是获取系统当前日期和时 ...