linux通常使用GNU C提供的函数getopt、getopt_long、getopt_long_only函数来解析命令行参数。

移植到Windows下

getopt.h

#ifndef _GETOPT_H
#define _GETOPT_H #ifdef __cplusplus
extern "C" {
#endif /* For communication from `getopt' to the caller.
When `getopt' finds an option that takes an argument,
the argument value is returned here.
Also, when `ordering' is RETURN_IN_ORDER,
each non-option ARGV-element is returned here.*/ extern char* optarg; /* Index in ARGV of the next element to be scanned.
This is used for communication to and from the caller
and for communication between successive calls to `getopt'. On entry to `getopt', zero means this is the first call; initialize. When `getopt' returns -1, this is the index of the first of the
non-option elements that the caller should itself scan. Otherwise, `optind' communicates from one call to the next
how much of ARGV has been scanned so far.*/ extern int optind; /* Callers store zero here to inhibit the error message `getopt' prints
for unrecognized options.*/ extern int opterr; /* Set to an option character which was unrecognized.*/ extern int optopt; /* Describe the long-named options requested by the application.
The LONG_OPTIONS argument to getopt_long or getopt_long_only is a vector
of `struct option' terminated by an element containing a name which is
zero. The field `has_arg' is:
no_argument(or 0) if the option does not take an argument,
required_argument(or 1) if the option requires an argument,
optional_argument(or 2) if the option takes an optional argument. If the field `flag' is not NULL, it points to a variable that is set
to the value given in the field `val' when the option is found, but
left unchanged if the option is not found. To have a long-named option do something other than set an `int' to
a compiled-in constant, such as set a value from `optarg', set the
option's `flag' field to zero and its `val' field to a nonzero
value (the equivalent single-letter option character, if there is
one).For long options that have a zero `flag' field, `getopt'
returns the contents of the `val' field.*/ struct option
{
#if defined (__STDC__) && __STDC__
const char* name;
#else
char* name;
#endif
/* has_arg can't be an enum because some compilers complain about
type mismatches in all the code that assumes it is an int.*/
int has_arg;
int* flag;
int val;
}; /* Names for the values of the `has_arg' field of `struct option'.*/ #define no_argument 0
#define required_argument 1
#define optional_argument 2 extern int getopt_long(int argc, char* const* argv, const char* shortopts, const struct option* longopts, int* longind);
extern int getopt_long_only(int argc, char* const* argv, const char* shortopts, const struct option* longopts, int* longind);
/* Internal only.Users should not call this directly.*/
extern int _getopt_internal(int argc, char* const* argv,
const char* shortopts,
const struct option* longopts, int* longind,
int long_only);
extern int
getopt(int argc,
char* const* argv,
const char* optstring); #ifdef __cplusplus
}
#endif #endif /* _GETOPT_H */

getopt.cpp

#include <stdio.h>
#include <stdlib.h>
#include <windows.h> #define getpid() GetCurrentProcessId() #ifndef _
/* This is for other GNU distributions with internationalized messages.
When compiling libc, the _ macro is predefined. */
#ifdef NEVER_HAVE_LIBINTL_H
# include <libintl.h>
# define _(msgid) gettext (msgid)
#else
# define _(msgid) (msgid)
#endif
#endif /* This version of `getopt' appears to the caller like standard Unix `getopt'
but it behaves differently for the user, since it allows the user
to intersperse the options with the other arguments. As `getopt' works, it permutes the elements of ARGV so that,
when it is done, all the options precede everything else. Thus
all application programs are extended to handle flexible argument order. Setting the environment variable POSIXLY_CORRECT disables permutation.
Then the behavior is completely standard. GNU application programs can use a third alternative mode in which
they can distinguish the relative order of options and other arguments. */ #include "getopt.h" /* For communication from `getopt' to the caller.
When `getopt' finds an option that takes an argument,
the argument value is returned here.
Also, when `ordering' is RETURN_IN_ORDER,
each non-option ARGV-element is returned here. */ char* optarg = NULL; /* Index in ARGV of the next element to be scanned.
This is used for communication to and from the caller
and for communication between successive calls to `getopt'. On entry to `getopt', zero means this is the first call; initialize. When `getopt' returns -1, this is the index of the first of the
non-option elements that the caller should itself scan. Otherwise, `optind' communicates from one call to the next
how much of ARGV has been scanned so far. */ /* 1003.2 says this must be 1 before any call. */
int optind = 1; /* Formerly, initialization of getopt depended on optind==0, which
causes problems with re-calling getopt as programs generally don't
know that. */ int __getopt_initialized = 0; /* The next char to be scanned in the option-element
in which the last option character we returned was found.
This allows us to pick up the scan where we left off. If this is zero, or a null string, it means resume the scan
by advancing to the next ARGV-element. */ static char* nextchar; /* Callers store zero here to inhibit the error message
for unrecognized options. */ int opterr = 1; /* Set to an option character which was unrecognized.
This must be initialized on some systems to avoid linking in the
system's own getopt implementation. */ int optopt = '?'; /* Describe how to deal with options that follow non-option ARGV-elements. If the caller did not specify anything,
the default is REQUIRE_ORDER if the environment variable
POSIXLY_CORRECT is defined, PERMUTE otherwise. REQUIRE_ORDER means don't recognize them as options;
stop option processing when the first non-option is seen.
This is what Unix does.
This mode of operation is selected by either setting the environment
variable POSIXLY_CORRECT, or using `+' as the first character
of the list of option characters. PERMUTE is the default. We permute the contents of ARGV as we scan,
so that eventually all the non-options are at the end. This allows options
to be given in any order, even with programs that were not written to
expect this. RETURN_IN_ORDER is an option available to programs that were written
to expect options and other ARGV-elements in any order and that care about
the ordering of the two. We describe each non-option ARGV-element
as if it were the argument of an option with character code 1.
Using `-' as the first character of the list of option characters
selects this mode of operation. The special argument `--' forces an end of option-scanning regardless
of the value of `ordering'. In the case of RETURN_IN_ORDER, only
`--' can cause `getopt' to return -1 with `optind' != ARGC. */ static enum
{
REQUIRE_ORDER, PERMUTE, RETURN_IN_ORDER
} ordering; /* Value of POSIXLY_CORRECT environment variable. */
static char* posixly_correct; /* Avoid depending on library functions or files
whose names are inconsistent. */ char* getenv(); static char*
my_index(const char* str, int chr)
{
while (*str)
{
if (*str == chr)
return (char*)str;
str++;
}
return 0;
} /* Handle permutation of arguments. */ /* Describe the part of ARGV that contains non-options that have
been skipped. `first_nonopt' is the index in ARGV of the first of them;
`last_nonopt' is the index after the last of them. */ static int first_nonopt;
static int last_nonopt; # define SWAP_FLAGS(ch1, ch2) /* Exchange two adjacent subsequences of ARGV.
One subsequence is elements [first_nonopt,last_nonopt)
which contains all the non-options that have been skipped so far.
The other is elements [last_nonopt,optind), which contains all
the options processed since those non-options were skipped. `first_nonopt' and `last_nonopt' are relocated so that they describe
the new indices of the non-options in ARGV after they are moved. */ static void
exchange(char** argv) {
int bottom = first_nonopt;
int middle = last_nonopt;
int top = optind;
char* tem; /* Exchange the shorter segment with the far end of the longer segment.
That puts the shorter segment into the right place.
It leaves the longer segment in the right place overall,
but it consists of two parts that need to be swapped next. */ while (top > middle && middle > bottom)
{
if (top - middle > middle - bottom)
{
/* Bottom segment is the short one. */
int len = middle - bottom;
register int i; /* Swap it with the top part of the top segment. */
for (i = 0; i < len; i++)
{
tem = argv[bottom + i];
argv[bottom + i] = argv[top - (middle - bottom) + i];
argv[top - (middle - bottom) + i] = tem;
SWAP_FLAGS(bottom + i, top - (middle - bottom) + i);
}
/* Exclude the moved bottom segment from further swapping. */
top -= len;
}
else
{
/* Top segment is the short one. */
int len = top - middle;
register int i; /* Swap it with the bottom part of the bottom segment. */
for (i = 0; i < len; i++)
{
tem = argv[bottom + i];
argv[bottom + i] = argv[middle + i];
argv[middle + i] = tem;
SWAP_FLAGS(bottom + i, middle + i);
}
/* Exclude the moved top segment from further swapping. */
bottom += len;
}
} /* Update records for the slots the non-options now occupy. */ first_nonopt += (optind - last_nonopt);
last_nonopt = optind;
} /* Initialize the internal data when the first call is made. */ static const char*
_getopt_initialize(int argc,
char* const* argv,
const char* optstring)
{
/* Start processing options with ARGV-element 1 (since ARGV-element 0
is the program name); the sequence of previously skipped
non-option ARGV-elements is empty. */ first_nonopt = last_nonopt = optind; nextchar = NULL; // posixly_correct = getenv ("POSIXLY_CORRECT"); /* Determine how to handle the ordering of options and nonoptions. */ if (optstring[0] == '-')
{
ordering = RETURN_IN_ORDER;
++optstring;
}
else if (optstring[0] == '+')
{
ordering = REQUIRE_ORDER;
++optstring;
}
//else if (posixly_correct != NULL)
// ordering = REQUIRE_ORDER;
else
ordering = PERMUTE; return optstring;
} /* Scan elements of ARGV (whose length is ARGC) for option characters
given in OPTSTRING. If an element of ARGV starts with '-', and is not exactly "-" or "--",
then it is an option element. The characters of this element
(aside from the initial '-') are option characters. If `getopt'
is called repeatedly, it returns successively each of the option characters
from each of the option elements. If `getopt' finds another option character, it returns that character,
updating `optind' and `nextchar' so that the next call to `getopt' can
resume the scan with the following option character or ARGV-element. If there are no more option characters, `getopt' returns -1.
Then `optind' is the index in ARGV of the first ARGV-element
that is not an option. (The ARGV-elements have been permuted
so that those that are not options now come last.) OPTSTRING is a string containing the legitimate option characters.
If an option character is seen that is not listed in OPTSTRING,
return '?' after printing an error message. If you set `opterr' to
zero, the error message is suppressed but we still return '?'. If a char in OPTSTRING is followed by a colon, that means it wants an arg,
so the following text in the same ARGV-element, or the text of the following
ARGV-element, is returned in `optarg'. Two colons mean an option that
wants an optional arg; if there is text in the current ARGV-element,
it is returned in `optarg', otherwise `optarg' is set to zero. If OPTSTRING starts with `-' or `+', it requests different methods of
handling the non-option ARGV-elements.
See the comments about RETURN_IN_ORDER and REQUIRE_ORDER, above. Long-named options begin with `--' instead of `-'.
Their names may be abbreviated as long as the abbreviation is unique
or is an exact match for some defined option. If they have an
argument, it follows the option name in the same ARGV-element, separated
from the option name by a `=', or else the in next ARGV-element.
When `getopt' finds a long-named option, it returns 0 if that option's
`flag' field is nonzero, the value of the option's `val' field
if the `flag' field is zero. The elements of ARGV aren't really const, because we permute them.
But we pretend they're const in the prototype to be compatible
with other systems. LONGOPTS is a vector of `struct option' terminated by an
element containing a name which is zero. LONGIND returns the index in LONGOPT of the long-named option found.
It is only valid when a long-named option has been found by the most
recent call. If LONG_ONLY is nonzero, '-' as well as '--' can introduce
long-named options. */ int
_getopt_internal(int argc,
char* const* argv,
const char* optstring,
const struct option* longopts,
int* longind,
int long_only)
{
optarg = NULL; if (optind == 0 || !__getopt_initialized)
{
if (optind == 0)
optind = 1; /* Don't scan ARGV[0], the program name. */
optstring = _getopt_initialize(argc, argv, optstring);
__getopt_initialized = 1;
} /* Test whether ARGV[optind] points to a non-option argument.
Either it does not have option syntax, or there is an environment flag
from the shell indicating it is not an option. The later information
is only used when the used in the GNU libc. */
#define NONOPTION_P (argv[optind][0] != '-' || argv[optind][1] == '\0') if (nextchar == NULL || *nextchar == '\0')
{
/* Advance to the next ARGV-element. */ /* Give FIRST_NONOPT & LAST_NONOPT rational values if OPTIND has been
moved back by the user (who may also have changed the arguments). */
if (last_nonopt > optind)
last_nonopt = optind;
if (first_nonopt > optind)
first_nonopt = optind; if (ordering == PERMUTE)
{
/* If we have just processed some options following some non-options,
exchange them so that the options come first. */ if (first_nonopt != last_nonopt && last_nonopt != optind)
exchange((char**)argv);
else if (last_nonopt != optind)
first_nonopt = optind; /* Skip any additional non-options
and extend the range of non-options previously skipped. */ while (optind < argc && NONOPTION_P)
optind++;
last_nonopt = optind;
} /* The special ARGV-element `--' means premature end of options.
Skip it like a null option,
then exchange with previous non-options as if it were an option,
then skip everything else like a non-option. */ if (optind != argc && !strcmp(argv[optind], "--"))
{
optind++; if (first_nonopt != last_nonopt && last_nonopt != optind)
exchange((char**)argv);
else if (first_nonopt == last_nonopt)
first_nonopt = optind;
last_nonopt = argc; optind = argc;
} /* If we have done all the ARGV-elements, stop the scan
and back over any non-options that we skipped and permuted. */ if (optind == argc)
{
/* Set the next-arg-index to point at the non-options
that we previously skipped, so the caller will digest them. */
if (first_nonopt != last_nonopt)
optind = first_nonopt;
return -1;
} /* If we have come to a non-option and did not permute it,
either stop the scan or describe it to the caller and pass it by. */ if (NONOPTION_P)
{
if (ordering == REQUIRE_ORDER)
return -1;
optarg = argv[optind++];
return 1;
} /* We have found another option-ARGV-element.
Skip the initial punctuation. */ nextchar = (argv[optind] + 1
+ (longopts != NULL && argv[optind][1] == '-'));
} /* Decode the current option-ARGV-element. */ /* Check whether the ARGV-element is a long option. If long_only and the ARGV-element has the form "-f", where f is
a valid short option, don't consider it an abbreviated form of
a long option that starts with f. Otherwise there would be no
way to give the -f short option. On the other hand, if there's a long option "fubar" and
the ARGV-element is "-fu", do consider that an abbreviation of
the long option, just like "--fu", and not "-f" with arg "u". This distinction seems to be the most useful approach. */ if (longopts != NULL
&& (argv[optind][1] == '-'
|| (long_only
&& (argv[optind][2]
|| !my_index(optstring, argv[optind][1])))))
{
char* nameend;
const struct option* p;
const struct option* pfound = NULL;
int exact = 0;
int ambig = 0;
int indfound = -1;
int option_index; for (nameend = nextchar; *nameend && *nameend != '='; nameend++)
/* Do nothing. */; /* Test all long options for either exact match
or abbreviated matches. */
for (p = longopts, option_index = 0; p->name; p++, option_index++)
if (!strncmp(p->name, nextchar, nameend - nextchar))
{
if ((unsigned int)(nameend - nextchar)
== (unsigned int)strlen(p->name))
{
/* Exact match found. */
pfound = p;
indfound = option_index;
exact = 1;
break;
}
else if (pfound == NULL)
{
/* First nonexact match found. */
pfound = p;
indfound = option_index;
}
else
/* Second or later nonexact match found. */
ambig = 1;
} if (ambig && !exact)
{
if (opterr)
fprintf(stderr, _("%s: option `%s' is ambiguous\n"),
argv[0], argv[optind]);
nextchar += strlen(nextchar);
optind++;
optopt = 0;
return '?';
} if (pfound != NULL)
{
option_index = indfound;
optind++;
if (*nameend)
{
/* Don't test has_arg with >, because some C compilers don't
allow it to be used on enums. */
if (pfound->has_arg)
optarg = nameend + 1;
else
{
if (opterr)
if (argv[optind - 1][1] == '-')
/* --option */
fprintf(stderr,
_
("%s: option `--%s' doesn't allow an argument\n"),
argv[0], pfound->name);
else
/* +option or -option */
fprintf(stderr,
_
("%s: option `%c%s' doesn't allow an argument\n"),
argv[0], argv[optind - 1][0], pfound->name); nextchar += strlen(nextchar); optopt = pfound->val;
return '?';
}
}
else if (pfound->has_arg == 1)
{
if (optind < argc)
optarg = argv[optind++];
else
{
if (opterr)
fprintf(stderr,
_("%s: option `%s' requires an argument\n"),
argv[0], argv[optind - 1]);
nextchar += strlen(nextchar);
optopt = pfound->val;
return optstring[0] == ':' ? ':' : '?';
}
}
nextchar += strlen(nextchar);
if (longind != NULL)
*longind = option_index;
if (pfound->flag)
{
*(pfound->flag) = pfound->val;
return 0;
}
return pfound->val;
} /* Can't find it as a long option. If this is not getopt_long_only,
or the option starts with '--' or is not a valid short
option, then it's an error.
Otherwise interpret it as a short option. */
if (!long_only || argv[optind][1] == '-'
|| my_index(optstring, *nextchar) == NULL)
{
if (opterr)
{
if (argv[optind][1] == '-')
/* --option */
fprintf(stderr, _("%s: unrecognized option `--%s'\n"),
argv[0], nextchar);
else
/* +option or -option */
fprintf(stderr, _("%s: unrecognized option `%c%s'\n"),
argv[0], argv[optind][0], nextchar);
}
nextchar = (char*)"";
optind++;
optopt = 0;
return '?';
}
} /* Look at and handle the next short option-character. */ {
char c = *nextchar++;
char* temp = my_index(optstring, c); /* Increment `optind' when we start to process its last character. */
if (*nextchar == '\0')
++optind; if (temp == NULL || c == ':')
{
if (opterr)
{
if (posixly_correct)
/* 1003.2 specifies the format of this message. */
fprintf(stderr, _("%s: illegal option -- %c\n"), argv[0], c);
else
fprintf(stderr, _("%s: invalid option -- %c\n"), argv[0], c);
}
optopt = c;
return '?';
}
/* Convenience. Treat POSIX -W foo same as long option --foo */
if (temp[0] == 'W' && temp[1] == ';')
{
char* nameend;
const struct option* p;
const struct option* pfound = NULL;
int exact = 0;
int ambig = 0;
int indfound = 0;
int option_index; /* This is an option that requires an argument. */
if (*nextchar != '\0')
{
optarg = nextchar;
/* If we end this ARGV-element by taking the rest as an arg,
we must advance to the next element now. */
optind++;
}
else if (optind == argc)
{
if (opterr)
{
/* 1003.2 specifies the format of this message. */
fprintf(stderr, _("%s: option requires an argument -- %c\n"),
argv[0], c);
}
optopt = c;
if (optstring[0] == ':')
c = ':';
else
c = '?';
return c;
}
else
/* We already incremented `optind' once;
increment it again when taking next ARGV-elt as argument. */
optarg = argv[optind++]; /* optarg is now the argument, see if it's in the
table of longopts. */ for (nextchar = nameend = optarg; *nameend && *nameend != '=';
nameend++)
/* Do nothing. */; /* Test all long options for either exact match
or abbreviated matches. */
for (p = longopts, option_index = 0; p->name; p++, option_index++)
if (!strncmp(p->name, nextchar, nameend - nextchar))
{
if ((unsigned int)(nameend - nextchar) == strlen(p->name))
{
/* Exact match found. */
pfound = p;
indfound = option_index;
exact = 1;
break;
}
else if (pfound == NULL)
{
/* First nonexact match found. */
pfound = p;
indfound = option_index;
}
else
/* Second or later nonexact match found. */
ambig = 1;
}
if (ambig && !exact)
{
if (opterr)
fprintf(stderr, _("%s: option `-W %s' is ambiguous\n"),
argv[0], argv[optind]);
nextchar += strlen(nextchar);
optind++;
return '?';
}
if (pfound != NULL)
{
option_index = indfound;
if (*nameend)
{
/* Don't test has_arg with >, because some C compilers don't
allow it to be used on enums. */
if (pfound->has_arg)
optarg = nameend + 1;
else
{
if (opterr)
fprintf(stderr, _("\%s: option `-W %s' doesn't allow an argument\n"), argv[0], pfound->name); nextchar += strlen(nextchar);
return '?';
}
}
else if (pfound->has_arg == 1)
{
if (optind < argc)
optarg = argv[optind++];
else
{
if (opterr)
fprintf(stderr,
_("%s: option `%s' requires an argument\n"),
argv[0], argv[optind - 1]);
nextchar += strlen(nextchar);
return optstring[0] == ':' ? ':' : '?';
}
}
nextchar += strlen(nextchar);
if (longind != NULL)
*longind = option_index;
if (pfound->flag)
{
*(pfound->flag) = pfound->val;
return 0;
}
return pfound->val;
}
nextchar = NULL;
return 'W'; /* Let the application handle it. */
}
if (temp[1] == ':')
{
if (temp[2] == ':')
{
/* This is an option that accepts an argument optionally. */
if (*nextchar != '\0')
{
optarg = nextchar;
optind++;
}
else
optarg = NULL;
nextchar = NULL;
}
else
{
/* This is an option that requires an argument. */
if (*nextchar != '\0')
{
optarg = nextchar;
/* If we end this ARGV-element by taking the rest as an arg,
we must advance to the next element now. */
optind++;
}
else if (optind == argc)
{
if (opterr)
{
/* 1003.2 specifies the format of this message. */
fprintf(stderr,
_("%s: option requires an argument -- %c\n"),
argv[0], c);
}
optopt = c;
if (optstring[0] == ':')
c = ':';
else
c = '?';
}
else
/* We already incremented `optind' once;
increment it again when taking next ARGV-elt as argument. */
optarg = argv[optind++];
nextchar = NULL;
}
}
return c;
}
} int
getopt(int argc,
char* const* argv,
const char* optstring)
{
return _getopt_internal(argc, argv, optstring,
(const struct option*)0, (int*)0, 0);
} int
getopt_long(
int argc,
char* const* argv,
const char* options,
const struct option* long_options,
int* opt_index)
{
return _getopt_internal(argc, argv, options, long_options, opt_index, 0);
} /* Like getopt_long, but '-' as well as '--' can indicate a long option.
If an option that starts with '-' (not '--') doesn't match a long option,
but does match a short option, it is parsed as a short option
instead. */ int
getopt_long_only(
int argc,
char* const* argv,
const char* options,
const struct option* long_options,
int* opt_index)
{
return _getopt_internal(argc, argv, options, long_options, opt_index, 1);
}

getopt_long函数的使用:

浅谈linux的命令行解析参数之getopt_long函数

Windows下解析命令行参数的更多相关文章

  1. boost之program_options库,解析命令行参数、读取配置文件

    一.命令行解析 tprogram_options解析命令行参数示例代码: #include <iostream> using namespace std; #include <boo ...

  2. optparse模块解析命令行参数的说明及优化

    一.关于解析命令行参数的方法 关于“解析命令行参数”的方法我们一般都会用到sys.argv跟optparse模块.关于sys.argv,网上有一篇非常优秀的博客已经介绍的很详细了,大家可以去这里参考: ...

  3. windows下cmd命令行显示UTF8字符设置(CHCP命令)

    本文由 www.169it.com 收集整理 在中文Windows系统中,如果一个文本文件是UTF-8编码的,那么在CMD.exe命令行窗口(所谓的DOS窗口)中不能正确显示文件中的内容.在默认情况下 ...

  4. python解析命令行参数

    常常需要解析命令行参数,经常忘记,好烦,总结下来吧. 1.Python 中也可以所用 sys 的 sys.argv 来获取命令行参数: sys.argv 是命令行参数列表 参数个数:len(sys.a ...

  5. linux 中解析命令行参数(getopt_long用法)

    linux 中解析命令行参数(getopt_long用法) http://www.educity.cn/linux/518242.html 详细解析命令行的getopt_long()函数 http:/ ...

  6. C语言中使用库函数解析命令行参数

    在编写需要命令行参数的C程序的时候,往往我们需要先解析命令行参数,然后根据这些参数来启动我们的程序. C的库函数中提供了两个函数可以用来帮助我们解析命令行参数:getopt.getopt_long. ...

  7. getopt、getopt_long和getopt_long_only解析命令行参数

    一:posix约定: 下面是POSIX标准中关于程序名.参数的约定: 程序名不宜少于2个字符且不多于9个字符: 程序名应只包含小写字母和阿拉伯数字: 选项名应该是单字符或单数字,且以短横 '-' 为前 ...

  8. 使用 Apache Commons CLI 解析命令行参数示例

    很好的输入参数解析方法 ,转载记录下 转载在: https://www.cnblogs.com/onmyway20xx/p/7346709.html Apache Commons CLI 简介 Apa ...

  9. getopt_long函数解析命令行参数

    转载:http://blog.csdn.net/hcx25909/article/details/7388750 每一天你都在使用大量的命令行程序,是不是感觉那些命令行参数用起来比较方便,他们都是使用 ...

随机推荐

  1. Linux内核实现透视---硬中断

    Linux的中断处理是驱动中比较重要的一部分内容,要清楚具体的实现才能更好的理解而不是靠记住别人理解后总结的规律,所以今天就打算从从源码来学习一下Linux内核对于中断处理过程,设计中断子系统的初始化 ...

  2. 探索 .NET Core 依赖注入的 IServiceCollection

    如果您使用了.NET Core,则很可能已使用Microsoft.Extensions.DependencyInjection中的内置依赖项注入容器,在本文中,我想更深入地了解Microsoft De ...

  3. window.navigator All In One

    window.navigator All In One navigator "use strict"; /** * * @author xgqfrms * @license MIT ...

  4. prefetch & preload & prerender & dns-prefetch & preconnect

    prefetch & preload & prerender & dns-prefetch & preconnect performance optimization ...

  5. 中英文混排网站排版指南 All In One

    中英文混排网站排版指南 All In One 排版 数字与单位 正确 5G 的下载速度可以达到 1Gbps,4G 为100Mbps 1Gbps === 1000Mbps 错误 5G的下载速度可以达到1 ...

  6. 如何使用 js 检测页面上全局变量

    如何使用 js 检测页面上全局变量 js 检测页面全局变量脚本 <!DOCTYPE html> <html lang="zh-Hans"> <head ...

  7. Java自学第8期——多线程

    1.多线程: 操作系统支持同时运行多个任务,一个任务通常是一个程序,所有运行中的程序就是一个进程().程序内部包含多个顺序执行流,每个顺序执行流就是一个线程. 并发:两个或者多个事件在同一个时间段内交 ...

  8. Redis高频面试题总结

    通过面试多家大型互联网企业,总结了如下的高频面试题目: 1.redis 过期键的删除策略? (1)定时删除:在设置键的过期时间的同时,创建一个定时器 timer). 让定时器在键的过期时间来临时,立即 ...

  9. 1053 Path of Equal Weight——PAT甲级真题

    1053 Path of Equal Weight 给定一个非空的树,树根为 RR. 树中每个节点 TiTi 的权重为 WiWi. 从 RR 到 LL 的路径权重定义为从根节点 RR 到任何叶节点 L ...

  10. Google单元测试框架gtest之官方sample笔记1--简单用例

    1.0 通用部分 和常见的测试工具一样,gtest提供了单体测试常见的工具和组件.比如判断各种类型的值相等,大于,小于等,管理多个测试的测试组如testsuit下辖testcase,为了方便处理初始化 ...