CF643E Bear and Destroying Subtrees


设 \(f_{i,j}\) 表示节点 \(i\) 的子树深度为 \(\le j\) 的概率,\(ch_i\) 表示 \(i\) 的儿子节点集合。

\(2^{-50}\) 以下的值由于精度忽视。

\[f_{i,j}=
\begin{cases}
\frac{1}{2^{|ch_i|}}&(j=0)\\
\prod_{s\in ch_i}\frac{f_{s,j-1}+1}{2}&(j>0)\\
\end{cases}
\]
//Data
const int N=5e5,D=50;
int n,fa[N+7]; db f[N+7][D+7];
void wen(int u){for(int i=0;i<=D;i++) f[u][i]=1;} //Main
int main(){
int q=ri; wen(n=1);
for(int ti=1;ti<=q;ti++){
int o=ri,r=ri;
if(o==1){
int u=++n; wen(u),fa[u]=r;
vector<int> ve;
for(int v=u,d=0;v&&d<=D;v=fa[v],d++) ve.pb(v);
for(int v=sz(ve)-1;v>=1;v--)
for(int i=1;i<=D;i++) f[ve[v]][i]/=(f[ve[v-1]][i-1]+1)/2;
f[r][0]/=2;
for(int v=1;v<=sz(ve)-1;v++)
for(int i=1;i<=D;i++) f[ve[v]][i]*=(f[ve[v-1]][i-1]+1)/2;
} else {
db res=0;
for(int i=1;i<=D;i++) res+=(f[r][i]-f[r][i-1])*i;
printf("%.10lf\n",res);
}
}
return 0;
}

祝大家学习愉快!

笔记-CF643E Bear and Destroying Subtrees的更多相关文章

  1. CF643E. Bear and Destroying Subtrees 期望dp

    题目链接 CF643E. Bear and Destroying Subtrees 题解 dp[i][j]表示以i为根的子树中,树高小于等于j的概率 转移就是dp[i][j] = 0.5 + 0.5 ...

  2. CF643E Bear and Destroying Subtrees

    题解 我们可以先写出\(dp\)式来. 设\(dp[u][i]\)表示以\(u\)为根的子树深度不超过\(i-1\)的概率 \(dp[u][i]=\prod (dp[v][i-1]+1)*\frac{ ...

  3. [CF643E]Bear and Destroying Subtrees(期望,忽略误差)

    Description: ​ 给你一棵初始只有根为1的树 ​ 两种操作 ​ 1 x 表示加入一个新点以 x为父亲 ​ 2 x 表示以 x 为根的子树期望最深深度 ​ 每条边都有 \(\frac{1}{ ...

  4. CF 643 E. Bear and Destroying Subtrees

    E. Bear and Destroying Subtrees http://codeforces.com/problemset/problem/643/E 题意: Q个操作. 加点,在原来的树上加一 ...

  5. Codeforces.643E.Bear and Destroying Subtrees(DP 期望)

    题目链接 \(Description\) 有一棵树.Limak可以攻击树上的某棵子树,然后这棵子树上的每条边有\(\frac{1}{2}\)的概率消失.定义 若攻击以\(x\)为根的子树,高度\(ht ...

  6. [cf674E]Bear and Destroying Subtrees

    令$f_{i,j}$表示以$i$为根的子树中,深度小于等于$j$的概率,那么$ans_{i}=\sum_{j=1}^{dep}(f_{i,j}-f_{i,j-1})j$ 大约来估计一下$f_{i,j} ...

  7. 一句话题解&&总结

    CF79D Password: 差分.两点取反,本质是匹配!最短路+状压DP 取反是套路,匹配是发现可以把操作进行目的化和阶段化,从而第二次转化问题. 且匹配不会影响别的位置答案 sequence 计 ...

  8. Leetcode 笔记 110 - Balanced Binary Tree

    题目链接:Balanced Binary Tree | LeetCode OJ Given a binary tree, determine if it is height-balanced. For ...

  9. Leetcode 笔记 98 - Validate Binary Search Tree

    题目链接:Validate Binary Search Tree | LeetCode OJ Given a binary tree, determine if it is a valid binar ...

随机推荐

  1. 加解密 C语言实现

    1.加密的基本原理 加密分为对称加密和非对称加密,对称加密就是加密方和解密放用同一个密钥. 加密是分组加密,即将明文数据分成多个密钥大小的块,依次和密钥运算,输出密文. padding,由于加密需要分 ...

  2. 双汇大数据方案选型:从棘手的InfluxDB+Redis到毫秒级查询的TDengine

    双汇发展多个分厂的能源管控大数据系统主要采用两种技术栈:InfluxDB/Redis和Kafka/Redis/HBase/Flink,对于中小型研发团队来讲,无论是系统搭建,还是实施运维都非常棘手.经 ...

  3. WPF窗体中嵌入/使用WinForm类/控件(基于.NET Core)

    如题,WPF中嵌入WinForm的做法,网络上已经很多示例,都是基于.NET XXX版的. 今天King様在尝试WPF(基于.NET Core 3.1)中加入Windows.Forms.ColorDi ...

  4. python爬虫 selenium 抓取 今日头条(ajax异步加载)

    from selenium import webdriver from lxml import etree from pyquery import PyQuery as pq import time ...

  5. Python_入门第一篇【持续更新...】

    1.准备 准备电脑 和 分区 1.准备配置稍高的电脑(后后期需要装虚拟机),分辨率1920*1080 2.分区: C→系统 D→Project E→软件安装盘 F→其他 准备编辑器 1.Sublime ...

  6. web安全原理分析-SQL注入漏洞全解

    简介 靶场:榆林学院信息安全协会--入侵榆大实验靶场 数字型注入 1 字符型注入 1 布尔注入 1.布尔注入简介 mysql bool注入是盲注的一种.与报错注入不同,bool注入没有任何报错信息输出 ...

  7. 网站实现微信扫码登录 php

    微信开放平台账号一个,必须是商户,不然你也开不了 1.在开放平台创建应用,并设置回调地址(域名即可) 2.生成二维码,前端代码,用户扫码后会给你的回调地址发送code <span id=&quo ...

  8. phpstorm换行符设置LF

    git执行命令行 git config --global core.autocrlf true

  9. 通过ip访问项目

  10. 上周我面了个三年 Javaer,这几个问题都没答出来

    身为 Java Web 开发我发现很多人一些 Web 基础问题都答不上来. 上周我面试了一个三年经验的小伙子,一开始我问他 HTTP/1.HTTP/2相关的他到是能答点东西出来. 后来我问他:你知道 ...