由于某人找了个单调栈的题解但是没研究透所以让我们来研究。。。。。。。。。。。。

首先先来考虑下面一种情况,假设第\(k\)次切割时,天数为\(d_k\),高度为\(b_k\),第\(k+1\)次切割时,天数为\(d_{k+1}\),高度为\(b_{k+1}\),那么我们定义一个切割速度,令\(v=\frac{b_{k+1}-b_k}{d_{k+1}-d_k}\),这个切割速度有什么含义呢,如果在\(d_k\)天时所有的草都是\(b_k\)高,那么生长速度\(>v\)的草都要割掉,注意这里的\(v\)极有可能是一个浮点数,而在写代码的时候最好还是避免浮点数的出现,所以要怎么转化?这个应该很显然,令\(v=\lfloor \frac{b_{k+1}-b_k}{d_{k+1}-d_k} \rfloor\)即可,因为判断的时候都是找的大于这个\(v\)的,而给出的生长速度都是整数,所以把这个\(v\)下取整后再判断大小也没有任何影响。怎么求出答案呢?很显然,就是\((d_{k+1}-d_k)*\)需要割掉的草的总生长速度\(+t\),\(t\)是什么?分类讨论一下,如果\(b_k>b_{k+1}\),那么除了长出来的草,还需要割掉\(b_k\)比\(b_{k+1}\)高的那一段,也就是\((b_k-b_{k+1})*\)需要割掉的草的总数量,如果\(b_k==b_{k+1}\),\(t=0\),如果如果\(b_k<b_{k+1}\),就不能长出来的全都割掉,因为只割到\(b_{k+1}\),所以需要把之前多算的那些减去,即\(-(b_{k+1}-b_k)*\)需要割掉的草的总数量,综上所述,\(t=(b_k-b_{k+1})*\)需要割掉的草的总数量,于是需要求的就是需要割掉的草的总生长速度和需要割掉的草的总数量,注意到\(m\)最大也就\(10^6\),所以开\(10^6\)个桶,第\(i\)个桶里边存生长速度为\(i\)的草的数量,然后就可以运用一下前缀和的思想求出上边的两个值。

好了基本思想有了,但是注意一个问题,并不是所有的需要切割的草在上一次切割时都恰好为\(b\),即上一次没有被切割但是下一次它长到了可以被切割的高度的草,把这些草。所以上边讨论了五百多字就白扯了吗,显然不是,还是有一部分草是满足上述的切割办法的,也就是两次都被切割的,所以只需要特殊考虑上一次没有被切割但是下一次它长到了可以被切割的高度的草,把这些草处理了就行。通过上一次的切割处理这个很不好处理,但是我们可以发现,如果我们定义第0天时割掉了所有高度大于0的草(对答案没有影响因为初始时都是0),那么假设当前时刻为\(d_k\),这些草在之前的某个时刻\(d_t(d_t \in[0,d_k)\ \ )\)一定会被割掉,于是\(d_t\)到\(d_k\)套用上述式子就行,聪明的你一定会发现这样会重复割草,没错,的确会,为了避免这种情况,假设上次割掉了生长速度超过\(last\)的草,那么这次只需要割掉生长速度超过切割速度且小于等于\(last\)的草即可,但是这样还是会出现重复割草的情况,因为可能前边已经割过的又被割了一次,所以需要记录前边每一次割草割过的最小切割速度,举个例子吧,假设记录的这个为\(to_i\),表示的意思就是在第\(i\)次割草的时候生长速度大于\(to_i\)的已经都被割掉了,所以如果此时\(k-i\)的切割速度大于\(to_i\)就需要直接\(break\)掉,避免了重复割草。

但是这样做的时间复杂度应该是\(O(m^2)\)的,需要优化一下。

注意到草的生长速度是有单调性的,在不去割草的情况下生长速度越大的高度一定越大废话,于是可以维护一个\(to\)值单调上升的单调栈。若栈顶那一次切割能切到的最小速度\(\leq\)当前能切到的最小速度,则前面切不到的依旧切不到,若栈顶那一次切割能切到的最小速度\(>\)当前能切到的最小速度,则先计算比栈顶那一次切割能切到的最小速度大的,并将栈顶\(pop\)掉,重复此过程至栈顶速度\(\leq\)当前能切到的最小速度。

但是这样会不会漏掉什么情况呢?答案是不会,因为每一次的割草都是割的连续的速度,只可能出现重复情况,而重复情况上边已经排除,所以这种做法是可以的。

由于本人蒟蒻,可能有些地方写的不严谨或者不清楚,又或者有的地方写错了。。。反正感觉不对的地方欢迎指出来。

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int lqs=5e5+10,m=1e6;
int day,a[lqs<<1],n,stk[lqs],top;
ll s[lqs<<1],d[lqs],b[lqs],to[lqs];
int main(){
scanf("%d%d",&n,&day);
for(int w,i=1;i<=n;i++)
scanf("%d",&w),a[w]++;
for(int i=1;i<=day;i++)
scanf("%lld%lld",&d[i],&b[i]);
for(int i=1;i<=m;i++)
s[i]=s[i-1]+1ll*a[i]*i;
for(int i=1;i<=m;i++)
a[i]+=a[i-1];
top=1;
for(int i=1;i<=day;i++){
ll res=0;
int last=m,x=max(to[stk[top]],min((b[i]-b[stk[top]])/(d[i]-d[stk[top]]),1ll*m));
while(x<last){
res+=(d[i]-d[stk[top]])*(s[last]-s[x])+(b[stk[top]]-b[i])*(a[last]-a[x]);
last=x;
if(last>to[stk[top]])break;
if(top==0)break;top--;
x=max(to[stk[top]],min((b[i]-b[stk[top]])/(d[i]-d[stk[top]]),1ll*m));
}
to[i]=last;
if(to[i]<m)stk[++top]=i;
printf("%lld\n",res);
}
}

[PA2015]Siano 单调栈的更多相关文章

  1. 2018.07.23[PA2015]Siano(线段树)

    [PA2015]Siano 描述 Description 农夫Byteasar买了一片n亩的土地,他要在这上面种草. 他在每一亩土地上都种植了一种独一无二的草,其中,第i亩土地的草每天会长高a[i]厘 ...

  2. BZOJ1012: [JSOI2008]最大数maxnumber [线段树 | 单调栈+二分]

    1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 8748  Solved: 3835[Submi ...

  3. BZOJ 4453: cys就是要拿英魂![后缀数组 ST表 单调栈类似物]

    4453: cys就是要拿英魂! Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 90  Solved: 46[Submit][Status][Discu ...

  4. BZOJ 3238: [Ahoi2013]差异 [后缀数组 单调栈]

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2326  Solved: 1054[Submit][Status ...

  5. poj 2559 Largest Rectangle in a Histogram - 单调栈

    Largest Rectangle in a Histogram Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19782 ...

  6. bzoj1510: [POI2006]Kra-The Disks(单调栈)

    这道题可以O(n)解决,用二分还更慢一点 维护一个单调栈,模拟掉盘子的过程就行了 #include<stdio.h> #include<string.h> #include&l ...

  7. BZOJ1057[ZJOI2007]棋盘制作 [单调栈]

    题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳. 而我们的 ...

  8. 洛谷U4859matrix[单调栈]

    题目描述 给一个元素均为正整数的矩阵,上升矩阵的定义为矩阵中每行.每列都是严格递增的. 求给定矩阵中上升子矩阵的数量. 输入输出格式 输入格式: 第一行两个正整数n.m,表示矩阵的行数.列数. 接下来 ...

  9. POJ3250[USACO2006Nov]Bad Hair Day[单调栈]

    Bad Hair Day Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 17774   Accepted: 6000 Des ...

随机推荐

  1. java实现第四届蓝桥杯幸运数

    幸运数 题目描述 幸运数是波兰数学家乌拉姆命名的.它采用与生成素数类似的"筛法"生成. 首先从1开始写出自然数1,2,3,4,5,6,- 1 就是第一个幸运数. 我们从2这个数开始 ...

  2. Ansible facts详解

    Ansible是一个系列文章,我会尽量以通俗易懂.诙谐幽默的总结方式给大家呈现这些枯燥的知识点,让学习变的有趣一些. Ansible系列博文直达链接:Ansible入门系列 前言 如果你跟着前面的文章 ...

  3. Python 导入CSV、JSON、XML数据

    常见的机器可读格式包括: - 逗号分隔值(Comma-Separated Values,CSV)- 制表符分隔值(tab-separated values,TSV)- JavaScript 对象符号( ...

  4. 调用webservice接口,报错:(十六进制值0x01)是无效的字符

    #事故现场 调用webservice接口,报错:(十六进制值0x01)是无效的字符. 如图: 意思是webservice返回的信息中包含无效的字符,无法解析成xml: #分析 使用postman向we ...

  5. Mybaties概述

  6. jenkins初始化启动报错导致进入web页面如法安装插件

    报错如下图所示: 解决方法: #1 查看网卡设置是否正确 #2 确定是否设置域名服务器 #3 查看路由表是否正常 #4 确保可用dns解析 #5 ping一下常见的公网地址

  7. 个人工作用SQL短句,不定时更新

    表字段操作 --一.修改字段默认值 alter table 表名 drop constraint 约束名字 ------说明:删除表的字段的原有约束 alter table 表名 add constr ...

  8. Python编程快速上手 让繁琐工作自动化 - 专业程序员的养成完整版PDF免费下载_百度云盘

    Python编程快速上手  让繁琐工作自动化 - 专业程序员的养成完整版PDF免费下载_百度云盘 提取码:7qm4 有关本书 累计销售超过10万册 零基础编程者的不二之选 基于Python3编写 通用 ...

  9. js清除所有的空格

    /** * 清除所有的空格 * @returns {*} */ String.prototype.removeSpace = function () { var str = this.replaceA ...

  10. centos 6.5 nat方式上网络设置

    1 前提虚拟机采用nat的方式和主机进行通信,这个时候再电脑上会模拟一个vmnet8网卡,如果是host-only对应的是vmnet1,配置一样 vmnet8的虚拟网卡,虚拟机通过vmnet8和主机之 ...