由于某人找了个单调栈的题解但是没研究透所以让我们来研究。。。。。。。。。。。。

首先先来考虑下面一种情况,假设第\(k\)次切割时,天数为\(d_k\),高度为\(b_k\),第\(k+1\)次切割时,天数为\(d_{k+1}\),高度为\(b_{k+1}\),那么我们定义一个切割速度,令\(v=\frac{b_{k+1}-b_k}{d_{k+1}-d_k}\),这个切割速度有什么含义呢,如果在\(d_k\)天时所有的草都是\(b_k\)高,那么生长速度\(>v\)的草都要割掉,注意这里的\(v\)极有可能是一个浮点数,而在写代码的时候最好还是避免浮点数的出现,所以要怎么转化?这个应该很显然,令\(v=\lfloor \frac{b_{k+1}-b_k}{d_{k+1}-d_k} \rfloor\)即可,因为判断的时候都是找的大于这个\(v\)的,而给出的生长速度都是整数,所以把这个\(v\)下取整后再判断大小也没有任何影响。怎么求出答案呢?很显然,就是\((d_{k+1}-d_k)*\)需要割掉的草的总生长速度\(+t\),\(t\)是什么?分类讨论一下,如果\(b_k>b_{k+1}\),那么除了长出来的草,还需要割掉\(b_k\)比\(b_{k+1}\)高的那一段,也就是\((b_k-b_{k+1})*\)需要割掉的草的总数量,如果\(b_k==b_{k+1}\),\(t=0\),如果如果\(b_k<b_{k+1}\),就不能长出来的全都割掉,因为只割到\(b_{k+1}\),所以需要把之前多算的那些减去,即\(-(b_{k+1}-b_k)*\)需要割掉的草的总数量,综上所述,\(t=(b_k-b_{k+1})*\)需要割掉的草的总数量,于是需要求的就是需要割掉的草的总生长速度和需要割掉的草的总数量,注意到\(m\)最大也就\(10^6\),所以开\(10^6\)个桶,第\(i\)个桶里边存生长速度为\(i\)的草的数量,然后就可以运用一下前缀和的思想求出上边的两个值。

好了基本思想有了,但是注意一个问题,并不是所有的需要切割的草在上一次切割时都恰好为\(b\),即上一次没有被切割但是下一次它长到了可以被切割的高度的草,把这些草。所以上边讨论了五百多字就白扯了吗,显然不是,还是有一部分草是满足上述的切割办法的,也就是两次都被切割的,所以只需要特殊考虑上一次没有被切割但是下一次它长到了可以被切割的高度的草,把这些草处理了就行。通过上一次的切割处理这个很不好处理,但是我们可以发现,如果我们定义第0天时割掉了所有高度大于0的草(对答案没有影响因为初始时都是0),那么假设当前时刻为\(d_k\),这些草在之前的某个时刻\(d_t(d_t \in[0,d_k)\ \ )\)一定会被割掉,于是\(d_t\)到\(d_k\)套用上述式子就行,聪明的你一定会发现这样会重复割草,没错,的确会,为了避免这种情况,假设上次割掉了生长速度超过\(last\)的草,那么这次只需要割掉生长速度超过切割速度且小于等于\(last\)的草即可,但是这样还是会出现重复割草的情况,因为可能前边已经割过的又被割了一次,所以需要记录前边每一次割草割过的最小切割速度,举个例子吧,假设记录的这个为\(to_i\),表示的意思就是在第\(i\)次割草的时候生长速度大于\(to_i\)的已经都被割掉了,所以如果此时\(k-i\)的切割速度大于\(to_i\)就需要直接\(break\)掉,避免了重复割草。

但是这样做的时间复杂度应该是\(O(m^2)\)的,需要优化一下。

注意到草的生长速度是有单调性的,在不去割草的情况下生长速度越大的高度一定越大废话,于是可以维护一个\(to\)值单调上升的单调栈。若栈顶那一次切割能切到的最小速度\(\leq\)当前能切到的最小速度,则前面切不到的依旧切不到,若栈顶那一次切割能切到的最小速度\(>\)当前能切到的最小速度,则先计算比栈顶那一次切割能切到的最小速度大的,并将栈顶\(pop\)掉,重复此过程至栈顶速度\(\leq\)当前能切到的最小速度。

但是这样会不会漏掉什么情况呢?答案是不会,因为每一次的割草都是割的连续的速度,只可能出现重复情况,而重复情况上边已经排除,所以这种做法是可以的。

由于本人蒟蒻,可能有些地方写的不严谨或者不清楚,又或者有的地方写错了。。。反正感觉不对的地方欢迎指出来。

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int lqs=5e5+10,m=1e6;
int day,a[lqs<<1],n,stk[lqs],top;
ll s[lqs<<1],d[lqs],b[lqs],to[lqs];
int main(){
scanf("%d%d",&n,&day);
for(int w,i=1;i<=n;i++)
scanf("%d",&w),a[w]++;
for(int i=1;i<=day;i++)
scanf("%lld%lld",&d[i],&b[i]);
for(int i=1;i<=m;i++)
s[i]=s[i-1]+1ll*a[i]*i;
for(int i=1;i<=m;i++)
a[i]+=a[i-1];
top=1;
for(int i=1;i<=day;i++){
ll res=0;
int last=m,x=max(to[stk[top]],min((b[i]-b[stk[top]])/(d[i]-d[stk[top]]),1ll*m));
while(x<last){
res+=(d[i]-d[stk[top]])*(s[last]-s[x])+(b[stk[top]]-b[i])*(a[last]-a[x]);
last=x;
if(last>to[stk[top]])break;
if(top==0)break;top--;
x=max(to[stk[top]],min((b[i]-b[stk[top]])/(d[i]-d[stk[top]]),1ll*m));
}
to[i]=last;
if(to[i]<m)stk[++top]=i;
printf("%lld\n",res);
}
}

[PA2015]Siano 单调栈的更多相关文章

  1. 2018.07.23[PA2015]Siano(线段树)

    [PA2015]Siano 描述 Description 农夫Byteasar买了一片n亩的土地,他要在这上面种草. 他在每一亩土地上都种植了一种独一无二的草,其中,第i亩土地的草每天会长高a[i]厘 ...

  2. BZOJ1012: [JSOI2008]最大数maxnumber [线段树 | 单调栈+二分]

    1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 8748  Solved: 3835[Submi ...

  3. BZOJ 4453: cys就是要拿英魂![后缀数组 ST表 单调栈类似物]

    4453: cys就是要拿英魂! Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 90  Solved: 46[Submit][Status][Discu ...

  4. BZOJ 3238: [Ahoi2013]差异 [后缀数组 单调栈]

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2326  Solved: 1054[Submit][Status ...

  5. poj 2559 Largest Rectangle in a Histogram - 单调栈

    Largest Rectangle in a Histogram Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19782 ...

  6. bzoj1510: [POI2006]Kra-The Disks(单调栈)

    这道题可以O(n)解决,用二分还更慢一点 维护一个单调栈,模拟掉盘子的过程就行了 #include<stdio.h> #include<string.h> #include&l ...

  7. BZOJ1057[ZJOI2007]棋盘制作 [单调栈]

    题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳. 而我们的 ...

  8. 洛谷U4859matrix[单调栈]

    题目描述 给一个元素均为正整数的矩阵,上升矩阵的定义为矩阵中每行.每列都是严格递增的. 求给定矩阵中上升子矩阵的数量. 输入输出格式 输入格式: 第一行两个正整数n.m,表示矩阵的行数.列数. 接下来 ...

  9. POJ3250[USACO2006Nov]Bad Hair Day[单调栈]

    Bad Hair Day Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 17774   Accepted: 6000 Des ...

随机推荐

  1. postman接口超时设置,用于debug等断点调试

    Settings->General->Request Timeout in ms(0 for infinity):设置请求超时的时间,默认为0

  2. 01-Python初体验

    本节内容 Python介绍 发展史 Python 2 or 3? 安装 Hello World程序 变量 用户输入 模块初识 .pyc是个什么鬼? 数据类型初识 数据运算 表达式if ...else语 ...

  3. linux安装redis-6.0.1单机和集群

    redis作为一个直接操作内存的key-value存储系统,也是一个支持数据持久化的Nosql数据库,具有非常快速的读写速度,可用于数据缓存.消息队列等. 一.单机版安装 1.下载redis 进入re ...

  4. [Computer Vision]Harris角点检测的详细推导

    Harris角点检测 思想 为什么要检测角点呢?因为角点的特征比较明显.进行角点检测的朴素思想是利用图像梯度,也就是根据图像强度的变化来寻找角点.如图所示 这里举了个例子,给定一个小的区域(Patch ...

  5. Unit3-窝窝社交圈

    全文共4909字,推荐阅读时间15~20分钟. 文章共分五个部分: JML总结 作业分析 评测相关 重构策略 课程体验感受 JML总结 定义 JML是一种对Java程序进行规格化设计的表示语言 JML ...

  6. Ubuntu安装Vmware Tools解决屏幕比例失调

    前言 安装ubuntu虚拟机时默认比例如下图,且ubuntu系统选项中没有合适的比例,可以安装Vmware Tools来解决. 注意:该方法只适用于有操作界面的系统,之前有位小伙伴在服务器上也想安装T ...

  7. control+Z的逆 control+Y

    接触过电脑的朋友一定知道control键加Z可以在大多时候撤销我们前一步的操作,相当于计算机系统里最“广谱”的后悔药. 然而,你有没有在编辑文本的时候却因为撤销的操作而后悔?输入文本之后撤销,发现少了 ...

  8. Android学习笔记菜单资源文件

    创建菜单资源 menu_one.xml <?xml version="1.0" encoding="utf-8"?> <menu xmlns: ...

  9. centos7搭建EFK

    环境: system: CentOS Linux release 7.7.1908 elasticsearch: elasticsearch-7.5.1-1.x86_64 kibana: kibana ...

  10. Task.Result跟 Task.GetAwaiter.GetResult()相同吗?怎么选?

    前几天在用线程池执行一些任务时运到一种情形,就是回调方法中使用到了异步方法,但是回调方法貌似不支持async await的写法.这时候我应该如何处理呢?是使用Task.Result来获取返回结果,还是 ...