题解【CF1444A Division】
题面
t 组数据。
给定参数 p,q,求一个最大的 x,满足 \((x|p)∧(q∤x)\)。
\(1\le t \le 500\),\(1\le p \le10^{18}\),\(2\le q\le10^9\),
\(1S\),\(512MB\)。
思路
当 \(p < q\) 时 或 \(q∤p\),答案显然是 \(p\),直接输出即可
当 \(q | p\),即 \(q\) 是 \(p\) 的因子时
我们可以将 \(p\) , \(q\) 质因数分解,让 \(p\) 去除以 \(q\)的质因子,直到 \(p\) 不能被 \(q\) 整除,
\(p\) 中比 \(q\) 大的质因子是对上面没有影响的,因此仅考虑\(q\) 的质因子
相比于删除多种质因子,只删一种的方案更优
穷举删除,找到最大值即可
复杂度\(O\) (\(t \sqrt{q}\))
推论
分解质因数 \(p,q,x\)
\[p=\prod a_i^{b_1}
\]\[q=\prod a_i^{b_2}
\]\[x=\prod a_i^{b_3}
\]因为条件是 \((x|p)∧(q∤x)\) 即:
\[p = k \times x =k\times \prod a_i^{b_3}(k\in N^*)
\]\[∃a_i|q,b_3<b_2
\]换句话说, \(x\) 中的包含 \(q\) 中的质因子,且质因子数量 \(<q\),可以为 \(0\)
因此要找的 \(x\) 就是 \(p\) 中删除部分质因子后的数,使得达到上述条件
相比删除多种,只需使一种质因子数量不满足上述条件即可,即只删一种
枚举 \(q\) 的所有质因子计算即可
Code
#include <iostream>//声明:luckyblock的思路
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <cmath>
#define int long long //我用 int 来代替 long long
using namespace std;
const int manx=1e6+10;
const int mamx = 1e6 + 11;
const int B = 1e6 + 11;
const int mod = 1e9 + 7;
const int inf = 0x3f3f3f3f;
inline int read() {
char c = getchar(); int x = 0, f = 1;
for ( ; !isdigit(c); c = getchar()) if (c == '-') f = -1;
for ( ; isdigit(c); c = getchar()) x = x * 10 + (c ^ 48);
return x * f;
}
signed main(){
int t = read();
while(t--){
int ans = 1;
int p = read(),q = read();//看清上边备注,和数据范围
int s = p;
if(p < q){cout<<p<<endl;continue;}
if(p % q != 0){cout<<p<<endl;continue;}
for(int i = 2;i*i <= q; i++){//枚举q中每一个“因子”
if(q%i == 0){
int jsq = 0,jsp = 0;
while(q % i == 0ll){ // 取模最好类型相同
q = q / i;
jsq ++;
}
while(p % i == 0ll){
p /= i;
jsp ++;
}
if(jsp < jsq) continue;//说明该 “因子 ”非 “质因子 ”
int jj = s;//因为 q p 时刻都在更新,所以预处理 用其他变量代替。
for(int k = 1; k <=jsp - jsq + 1;k++){
jj /= i;
}
ans = max(jj,ans);
}
}
if(q != 1){//比q大的质因子,注:此时的p q 以被更新,所存的数中不存在共同的质因子
int jsp = 0;
while(p % q == 0){
p /= q;
jsp++;
}
int jj = s;
for(int i = 1; i <= jsp;i ++){
jj /= q;
}
//cout<<jj<<endl;
ans = max(jj,ans);
}
cout<<ans<<endl;
}
return 0;
}
题解【CF1444A Division】的更多相关文章
- 【做题记录】CF1444A Division
CF1444A Division 题意: 给定 \(t\) 组询问,每组给两个数 \(p_i\) 和 \(q_i\) ,找出最大的整数 \(x_i\) ,要求 \(p_i\) 可被 \(x_i\) 整 ...
- CF1444A Division 求质因数的方法
2020.12.20 求质因数的方法 CF1444A Division #include<bits/stdc++.h> #define ll long long #define fp(i, ...
- 水题挑战6: CF1444A DIvision
A. Division time limit per test1 second memory limit per test512 megabytes inputstandard input outpu ...
- CF1444A (1445C)Division 题解
题意:求最大的正整数 \(x\) ,使 \(x \mid p且q \nmid x\) . 首先,当 \(q \nmid p\) ,显然取 \(x=p\) 是最优解. 现在,我们考虑 \(q \mid ...
- 【题解】HDU5845 Best Division (trie树)
[题解]HDU5845 Best Division (trie树) 题意:给定你一个序列(三个参数来根),然后请你划分子段.在每段子段长度小于等于\(L\)且子段的异或和\(\le x\)的情况下最大 ...
- Large Division(大数)题解
Given two integers, a and b, you should check whether a is divisible by b or not. We know that an in ...
- HDU3480:Division——题解
http://acm.hdu.edu.cn/showproblem.php?pid=3480 将一列数划分成几个集合,这些集合的并集为该数列,求每个数列的(最大值-最小值)^2的和的最小值. 简单的d ...
- December Challenge 2019 Division 1 题解
传送门 当我打开比赛界面的时候所有题目都已经被一血了-- BINXOR 直接把异或之后二进制最多和最少能有多少个\(1\)算出来,在这个范围内枚举,组合数算一下就行了.注意\(1\)的个数是\(2\) ...
- CodeChef November Challenge 2019 Division 1题解
传送门 AFO前的最后一场CC了--好好打吧-- \(SIMGAM\) 偶数行的必定两人平分,所以只要抢奇数行中间那个就行了 这题怎么被爆破了 //quming #include<bits/st ...
随机推荐
- java 常用时间操作类,计算到期提醒,N年后,N月后的日期
package com.zjjerp.tool; import java.text.ParseException; import java.text.ParsePosition; import jav ...
- 高并发redis分布式锁
1.方法一 2方法二
- Flash Player的终章——赠予它的挽歌
本文由葡萄城技术团队原创并首发 转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具.解决方案和服务,赋能开发者. 12月28日消息,微软已经确认Windows 10在下一次更新时将自动删除F ...
- Hi,这里是我的2020年,请查收!
Part 1. 回顾 还记得新年第一天,我在刚租的房子给自己做了一顿咖喱饭 (不好意思放照片...),然后回顾并展望了一下自己的 2020. 转眼间,2020 就过去了. 总的来说,今年小目标 (比如 ...
- Win10下mysql5.5和mysql8.0.19共存
Win10下mysql5.5和mysql8.0.19共存 需求:由于之前做的项目用的是mysql5.5,而新接的项目指定用mysql8,需要myql5..5和8同时存在运行. 前提:电脑已经安装mys ...
- win8.1下jdk的安装和环境变量的配置 eclipse的安装和汉化
1.首先下载jdk安装包,安装的时候会有两个文件安装,一个是jdk一个是jre建议两个文件不要安装在一个目录下 2.安装jdk后面就是配置环境变量,path和classpath,path要在用户变量中 ...
- java13编程基础之数组深入
大纲一维数组概述数组是相同类型数据的有序集合.数组描述的是相同类型的若干个数据,按照一定的先后次序排列组合而成.其中,每一个数据称作一个元素,每个元素可以通过一个索引(下标)来访问它们. 这些按序排列 ...
- NOIP初赛篇——07信息编码表示
一.基本概念 编码 计算机要处理的数据除了数值数据以外,还有各类符号.图形.图像和声音等非数值数据.而计算机只能识别两个数字0,1.要使计算机能处理这些信息,首先必须要将各类信息转换成0与1表示的 ...
- php 二位数组 转一维数组
$result = []; array_map(function ($value) use (&$result) { $result = array_merge($result, array_ ...
- Java 使用拦截器无限转发/重定向无限循环/重定向次数过多报错(StackOverflowError) 解决方案
说明:当使用拦截器出现"请求转发"无限循环或者"重定向"次数过多这种问题的时候,一般都是 拦截器 设置错了 情况一:请求转发时没有配置排除拦截路径,就是说你访问 ...