注意,本文中所指“机器学习"(ML)技术,特指SVM、随机森林等”传统“技术。
一、应用场景
       相比较当下发展迅速的各路“端到端”技术,SVM、随机森林等”传统“技术它的应用价值,在于”以更贴合现有系统的方式提供一种识别的途径“。比如你使用tf、keras或者openvino,那么首先你需要按照这些平台的方式搭建一个运行环境并且编写相关的接口,而后在现有系统中调用这个接口,获得一个定量的分类。如果对结果不满意,那么能够做的首先是对参数的调节、对模型的重新分类。包括OpenCV自己的DNN也是类似的方式。这些都需要并且依赖训练成功的识别模型,但是在现实的识别项目中,能够获得的标注结果是随着项目进展而不断出现的,在这种情况下,我们更需要的是”一种能够对现有识别进行验证的方法“,这个时候“机器学习"(ML)技术足够使用。

Opencv支持的机器学习算法(参考《学习OpenCV4》)

算法名称 描述
Mahalanobis 通过除以协方差来对数据空间进行变换,由此得到一个标志着空间拉伸程度的距离度量。如果协方差矩阵是单位矩阵,那么这个度量等价于欧氏距离[Mahalanobis36]。
K-均值算法 这是一种非监督的聚类方法,用k个聚类中心表示数据的分布,k的大小由用户定义。该方法与期望最大化算法(expectation maximization)的区别在于k-均值的中心不是符合高斯分布的。而由于每个聚类中心都竞争着去俘获与之距离较近的点,所以聚类的结果更像是肥皂泡,聚类区域经常被用作稀疏直方图的bin,用来描述数据。该方法由Steinhaus [Steinhaus56]提出,由Lloyd [Lloyd57]推广。
正态/朴素贝叶斯 这是一个生成式的分类器。它假设特征符合高斯分布且在统计学上服从独立同分布。但是这个过于苛刻的假设在很多情况下是不能满足的。因此,它又被称为“朴素”贝叶斯分类器。尽管如此,在许多情况下,这个方法的效果却出奇的好。该方法最早出自[Maron61; Minsky61]
决策树 这是一个判别分类器。该树在当前节点通过寻找数据特征和一个阈值来实现数据到不同类别的最优划分。处理流程是不断将数据进行划分,然后下降到树的左侧子节点或者右侧子节点。虽然该算法的性能不是最好的,但往往是测试时的首选,因为它运行速度快,性能好。[Breiman84]
期望最大化算法(EM) 这是一种用于聚类的无监督生成算法。它会用N维高斯分布去拟合数据,其中N的大小是由用户自己定义的。这样仅仅用很少的几个参数(方差和均值)就可以表示一个较为复杂的数据分布。该方法经常用于分割,它与k-均值算法的比较见文献[Dempster77]。
Boosting 它是由一组判别分类器组成。最终的决策是由组成它的各个分类器的加权组合来决定。在训练中,逐个训练子分类器。且每个子分类器都是弱分类器(性能上只是优于随机选择)。这些弱分类器由单变量决策树构成,被称为“桩(stumps)”。在训练中,决策桩(decision stump)不仅从数据中学习分类决策而且根据预测精度学习“投票”的权重。当训练下一个分类器的时候,数据样本的权重会被重新分配。使之能够给予分错的数据更多的注意力。训练过程不停地执行,直到总错误(加权组合所有决策树组成的分类器产生的错误)低于某个已经设置好的阈值。为了达到好的效果,这个方法通常需要很大量训练的训练数据[Freund97]。
随机森林 它是由许多决策树组成的“森林”,每个决策树向下递归以获取最大深度。在学习过程中,每棵树的每个节点只从特征数据的一个随机子集中选择。这保证了每棵树是统计意义上不相关的分类器。在识别过程中,将每棵树的结果进行投票来确定最终结果,每棵树的权重相同。这个分类器方法经常很有效,而且对每棵树的输出进行平均,可以处理回归问题[Ho95; Criminisi13; Breiman01]。
K近邻 K近邻可能是最简单的分类器。训练数据跟类别标签存放在一起,离测试数据最近的(欧氏距离最近)K个样本进行投票,确定测试数据的分类结果。该方法通常比较有效,但是速度比较慢且对内存需求比较大[Fix51],详见FLANN 入口
快速近似最近邻算法(FLANN)a Opencv包含了完整的快速近似最近邻算法函数库,该库由Marius Muja开发,可实现K近邻的快速近似和匹配[Muja09]。
支持向量机(SVM) 它可以进行分类,也可以进行回归。该算法需要定义一个高维空间中任两点的距离函数。(将数据投影到高维空间会使数据更容易地线性可分。)该算法可以学习一个分类超平面,用来在高维空间里实现最优分类器。当数据有限的时候,该算法可以获得非常好的性能,而boosting和随机森林只能在拥有大量训练数据b时才有好的效果。
人脸识别/级联分类器 这个物体检测算法巧妙地使用了boosting算法。OpenCV提供了正面人脸检测的检测器,它的检测效果非常好。你可以使用OpenCV提供的训练算法,也可以使用这个分类器提取你自己想要的特征或使用其他的特征,使之能够检测其他物体。该算法非常擅长检测特定视角的刚性物体。这个分类器也俗称“Viola-Jones分类器”,这是以它发明者的名字命名的(Viola04)。
Waldboost 它是Viola 算法的衍生算法(参见上一条),Waldboost是一个非常快的目标检测器,它在一系列任务中的表现都要优于传统的级联分类器 (Sochman05)。它存在于在…/ opencv_contrib /模块中。
隐变量支持向量机 隐变量支持向量机是一个局部模型。通过识别目标的各个独立部分并学习一个模型去发现这些部分之间联系来识别复杂目标[Felzenszwalb10]。
词袋模型 词袋模型是在文档分类和视觉图像分类中都有大量应用的技术。该算法功能强大,因为它不仅可以用来b识别单个目标,还可以用来识别场景和环境。
并且提供了StatModel作为Opencv中的标准学习模型,现在ML库中的例程都是在公共基类cv::ml::StatModel的派生类中实现。 这个基类定义了可用于所有算法的通用接口。(具体请参考 https://docs.opencv.org/master/db/d7d/classcv_1_1ml_1_1StatModel.html

二、技术细节
以easyPr中使用SVM识别”图像中是否存在车牌“为例,说明相关技术的使用:
#include "pch.h"
#include <iostream>
#include <string>
#include <cstring>
#include <cstdlib>
#include <vector>
#include "gocvhelper.h"
using namespace std;
using namespace cv;
//解决具体的“判定当前图片中是否存在车牌”问题,使用SVM方法。
typedef enum {
    kForward = 1, // correspond to "has plate"
    kInverse = 0  // correspond to "no plate"
} SvmLabel;
typedef struct {
    std::string file;
    SvmLabel label;
} TrainItem;
std::vector<TrainItem> train_file_list_;
std::vector<TrainItem> test_file_list_;
std::vector<std::string> getFiles(const std::string &folder,const bool all  = true ) {
    std::vector<std::string> files;
    std::list<std::string> subfolders;
    subfolders.push_back(folder);
    while (!subfolders.empty()) {
        std::string current_folder(subfolders.back());
        if (*(current_folder.end() - 1) != '/') {
            current_folder.append("/*");
        }
        else {
            current_folder.append("*");
        }
        subfolders.pop_back();
        struct _finddata_t file_info;
        auto file_handler = _findfirst(current_folder.c_str(), &file_info);
        while (file_handler != -1) {
            if (all &&
                (!strcmp(file_info.name, ".") || !strcmp(file_info.name, ".."))) {
                if (_findnext(file_handler, &file_info) != 0) break;
                continue;
            }
            if (file_info.attrib & _A_SUBDIR) {
                // it's a sub folder
                if (all) {
                    // will search sub folder
                    std::string folder(current_folder);
                    folder.pop_back();
                    folder.append(file_info.name);
                    subfolders.push_back(folder.c_str());
                }
            }
            else {
                // it's a file
                std::string file_path;
                // current_folder.pop_back();
                file_path.assign(current_folder.c_str()).pop_back();
                file_path.append(file_info.name);
                files.push_back(file_path);
            }
            if (_findnext(file_handler, &file_info) != 0) break;
        }  // while
        _findclose(file_handler);
    }
    return files;
}
const char* plates_folder_ = "E:/代码资源/EasyPR/resources/train/svm";
void prepare() {
    srand(unsigned(time(NULL)));
    char buffer[260] = { 0 };
    sprintf_s(buffer, "%s/has/train", plates_folder_);
    auto has_file_train_list = getFiles(buffer);
    std::random_shuffle(has_file_train_list.begin(), has_file_train_list.end());
    sprintf_s(buffer, "%s/has/test", plates_folder_);
    auto has_file_test_list = getFiles(buffer);
    std::random_shuffle(has_file_test_list.begin(), has_file_test_list.end());
    sprintf_s(buffer, "%s/no/train", plates_folder_);
    auto no_file_train_list = getFiles(buffer);
    std::random_shuffle(no_file_train_list.begin(), no_file_train_list.end());
    sprintf_s(buffer, "%s/no/test", plates_folder_);
    auto no_file_test_list = getFiles(buffer);
    std::random_shuffle(no_file_test_list.begin(), no_file_test_list.end());
    fprintf(stdout, ">> Collecting train data...\n");
    for (auto file : has_file_train_list)
        train_file_list_.push_back({ file, kForward });
    for (auto file : no_file_train_list)
        train_file_list_.push_back({ file, kInverse });
    fprintf(stdout, ">> Collecting test data...\n");
    for (auto file : has_file_test_list)
        test_file_list_.push_back({ file, kForward });
    for (auto file : no_file_test_list)
        test_file_list_.push_back({ file, kInverse });
}
//特征提取
float countOfBigValue(Mat &mat, int iValue) {
    float iCount = 0.0;
    if (mat.rows > 1) {
        for (int i = 0; i < mat.rows; ++i) {
            if (mat.data[i * mat.step[0]] > iValue) {
                iCount += 1.0;
            }
        }
        return iCount;
    }
    else {
        for (int i = 0; i < mat.cols; ++i) {
            if (mat.data[i] > iValue) {
                iCount += 1.0;
            }
        }
        return iCount;
    }
}
Mat ProjectedHistogram(Mat img, int t, int threshold) {
    int sz = (t) ? img.rows : img.cols;
    Mat mhist = Mat::zeros(1, sz, CV_32F);
    for (int j = 0; j < sz; j++) {
        Mat data = (t) ? img.row(j) : img.col(j);
        mhist.at<float>(j) = countOfBigValue(data, threshold);
    }
    // Normalize histogram
    double min, max;
    minMaxLoc(mhist, &min, &max);
    if (max > 0)
        mhist.convertTo(mhist, -1, 1.0f / max, 0);
    return mhist;
}
Mat getHistogram(Mat in) {
    const int VERTICAL = 0;
    const int HORIZONTAL = 1;
    // Histogram features
    Mat vhist = ProjectedHistogram(in, VERTICAL,20);
    Mat hhist = ProjectedHistogram(in, HORIZONTAL,20);
    // Last 10 is the number of moments components
    int numCols = vhist.cols + hhist.cols;
    Mat out = Mat::zeros(1, numCols, CV_32F);
    int j = 0;
    for (int i = 0; i < vhist.cols; i++) {
        out.at<float>(j) = vhist.at<float>(i);
        j++;
    }
    for (int i = 0; i < hhist.cols; i++) {
        out.at<float>(j) = hhist.at<float>(i);
        j++;
    }
    return out;
}
void getHistogramFeatures(const Mat& image, Mat& features) {
    Mat grayImage;
    cvtColor(image, grayImage, cv::COLOR_RGB2GRAY);
    //grayImage = histeq(grayImage);
    Mat img_threshold;
    threshold(grayImage, img_threshold, 0, 255, cv::THRESH_OTSU + cv::THRESH_BINARY);
    //Mat img_threshold = grayImage.clone();
    //spatial_ostu(img_threshold, 8, 2, getPlateType(image, false));
    features = getHistogram(img_threshold);
}
void getColorFeatures(const Mat& src, Mat& features) {
    Mat src_hsv;
    //grayImage = histeq(grayImage);
    cvtColor(src, src_hsv, cv::COLOR_BGR2HSV);
    int channels = src_hsv.channels();
    int nRows = src_hsv.rows;
    // consider multi channel image
    int nCols = src_hsv.cols * channels;
    if (src_hsv.isContinuous()) {
        nCols *= nRows;
        nRows = 1;
    }
    const int sz = 180;
    int h[sz] = { 0 };
    uchar* p;
    for (int i = 0; i < nRows; ++i) {
        p = src_hsv.ptr<uchar>(i);
        for (int j = 0; j < nCols; j += 3) {
            int H = int(p[j]);      // 0-180
            if (H > sz - 1) H = sz - 1;
            if (H < 0) H = 0;
            h[H]++;
        }
    }
    Mat mhist = Mat::zeros(1, sz, CV_32F);
    for (int j = 0; j < sz; j++) {
        mhist.at<float>(j) = (float)h[j];
    }
    // Normalize histogram
    double min, max;
    minMaxLoc(mhist, &min, &max);
    if (max > 0)
        mhist.convertTo(mhist, -1, 1.0f / max, 0);
    features = mhist;
}
void getHistomPlusColoFeatures(const Mat& image, Mat& features) {
    Mat feature1, feature2;
    getHistogramFeatures(image, feature1);
    getColorFeatures(image, feature2);
    hconcat(feature1.reshape(1, 1), feature2.reshape(1, 1), features);
}
void test(cv::Ptr<cv::ml::SVM> svm_) {
    if (test_file_list_.empty()) {
        prepare();
    }
    double count_all = test_file_list_.size();
    double ptrue_rtrue = 0;
    double ptrue_rfalse = 0;
    double pfalse_rtrue = 0;
    double pfalse_rfalse = 0;
    for (auto item : test_file_list_) {
        auto image = cv::imread(item.file);
        if (!image.data) {
            std::cout << "no" << std::endl;
            continue;
        }
        cv::Mat feature;
        getHistomPlusColoFeatures(image, feature);
        auto predict = int(svm_->predict(feature));
        //std::cout << "predict: " << predict << std::endl;
        auto real = item.label;
        if (predict == kForward && real == kForward) ptrue_rtrue++;
        if (predict == kForward && real == kInverse) ptrue_rfalse++;
        if (predict == kInverse && real == kForward) pfalse_rtrue++;
        if (predict == kInverse && real == kInverse) pfalse_rfalse++;
    }
    std::cout << "count_all: " << count_all << std::endl;
    std::cout << "ptrue_rtrue: " << ptrue_rtrue << std::endl;
    std::cout << "ptrue_rfalse: " << ptrue_rfalse << std::endl;
    std::cout << "pfalse_rtrue: " << pfalse_rtrue << std::endl;
    std::cout << "pfalse_rfalse: " << pfalse_rfalse << std::endl;
    double precise = 0;
    if (ptrue_rtrue + ptrue_rfalse != 0) {
        precise = ptrue_rtrue / (ptrue_rtrue + ptrue_rfalse);
        std::cout << "precise: " << precise << std::endl;
    }
    else {
        std::cout << "precise: "
            << "NA" << std::endl;
    }
    double recall = 0;
    if (ptrue_rtrue + pfalse_rtrue != 0) {
        recall = ptrue_rtrue / (ptrue_rtrue + pfalse_rtrue);
        std::cout << "recall: " << recall << std::endl;
    }
    else {
        std::cout << "recall: "
            << "NA" << std::endl;
    }
    double Fsocre = 0;
    if (precise + recall != 0) {
        Fsocre = 2 * (precise * recall) / (precise + recall);
        std::cout << "Fsocre: " << Fsocre << std::endl;
    }
    else {
        std::cout << "Fsocre: "
            << "NA" << std::endl;
    }
}
//数据准备
cv::Ptr<cv::ml::TrainData> tdata() {
    cv::Mat samples;
    std::vector<int> responses;
    for (auto f : train_file_list_) {
        auto image = cv::imread(f.file);
        if (!image.data) {
            fprintf(stdout, ">> Invalid image: %s  ignore.\n", f.file.c_str());
            continue;
        }
        cv::Mat feature;
        getHistomPlusColoFeatures(image, feature);
        feature = feature.reshape(1, 1);
        samples.push_back(feature);
        responses.push_back(int(f.label));
    }
    cv::Mat samples_, responses_;
    samples.convertTo(samples_, CV_32FC1);
    cv::Mat(responses).copyTo(responses_);
    return cv::ml::TrainData::create(samples_, cv::ml::SampleTypes::ROW_SAMPLE, responses_);
}
int main(int argc, char** argv)
{
    //initial SVM
    cv::Ptr<cv::ml::SVM> svm = cv::ml::SVM::create();
    svm->setType(cv::ml::SVM::Types::C_SVC);
    svm->setKernel(cv::ml::SVM::KernelTypes::RBF);//使用推荐的参数
    svm->setDegree(0.1);
    svm->setGamma(0.1);
    svm->setCoef0(0.1);
    svm->setC(1);
    svm->setNu(0.1);
    svm->setP(0.1);
    svm->setTermCriteria(cv::TermCriteria(cv::TermCriteria::MAX_ITER, 20000, 0.0001));
    //数据准备
    prepare();
    if (train_file_list_.size() == 0) {
        fprintf(stdout, "No file found in the train folder!\n");
        fprintf(stdout, "You should create a folder named \"tmp\" in EasyPR main folder.\n");
        fprintf(stdout, "Copy train data folder(like \"SVM\") under \"tmp\". \n");
        return -1;
    }
    auto train_data = tdata();
    fprintf(stdout, ">> Training SVM model, please wait...\n");
    
    svm->trainAuto(train_data, 10, cv::ml::SVM::getDefaultGrid(cv::ml::SVM::C),
        cv::ml::SVM::getDefaultGrid(cv::ml::SVM::GAMMA), cv::ml::SVM::getDefaultGrid(cv::ml::SVM::P),
        cv::ml::SVM::getDefaultGrid(cv::ml::SVM::NU), cv::ml::SVM::getDefaultGrid(cv::ml::SVM::COEF),
        cv::ml::SVM::getDefaultGrid(cv::ml::SVM::DEGREE), true);
    //svm->save("svm.xml");
    test(svm);
    cv::waitKey(0);
    return 0;
}

其中,两个目录下的图片基本是这样,一个是包含车牌的、一个是不包含车牌的,通过SVM训练,得到识别“图像中是否存在车牌”这样的能力。【SVM是小样本二分类的典型模型】
从这个结果来看,相关结果只能作为参考,而不能作为决定。(precise 精准率、recall  召回率、fscore  精確度常用的指標)
在同样的数据集下,对原始例子丰富,并且采用“随机森林”方法进行检测。对RT的参数配置进行研究。
#include "pch.h"
#include <iostream>
#include <string>
#include <cstring>
#include <cstdlib>
#include <vector>
#include "gocvhelper.h"
using namespace std;
using namespace cv;
//解决具体的“判定当前图片中是否存在车牌”问题。
typedef enum {
    kForward = 1, // correspond to "has plate"
    kInverse = 0  // correspond to "no plate"
} SvmLabel;
typedef struct {
    std::string file;
    SvmLabel label;
} TrainItem;
std::vector<TrainItem> train_file_list_;
std::vector<TrainItem> test_file_list_;
std::vector<std::string> getFiles(const std::string &folder,const bool all  = true ) {
    std::vector<std::string> files;
    std::list<std::string> subfolders;
    subfolders.push_back(folder);
    while (!subfolders.empty()) {
        std::string current_folder(subfolders.back());
        if (*(current_folder.end() - 1) != '/') {
            current_folder.append("/*");
        }
        else {
            current_folder.append("*");
        }
        subfolders.pop_back();
        struct _finddata_t file_info;
        auto file_handler = _findfirst(current_folder.c_str(), &file_info);
        while (file_handler != -1) {
            if (all &&
                (!strcmp(file_info.name, ".") || !strcmp(file_info.name, ".."))) {
                if (_findnext(file_handler, &file_info) != 0) break;
                continue;
            }
            if (file_info.attrib & _A_SUBDIR) {
                // it's a sub folder
                if (all) {
                    // will search sub folder
                    std::string folder(current_folder);
                    folder.pop_back();
                    folder.append(file_info.name);
                    subfolders.push_back(folder.c_str());
                }
            }
            else {
                // it's a file
                std::string file_path;
                // current_folder.pop_back();
                file_path.assign(current_folder.c_str()).pop_back();
                file_path.append(file_info.name);
                files.push_back(file_path);
            }
            if (_findnext(file_handler, &file_info) != 0) break;
        }  // while
        _findclose(file_handler);
    }
    return files;
}
//数据集准备
const char* plates_folder_ = "E:/代码资源/EasyPR/resources/train/svm";
void prepare() {
    srand(unsigned(time(NULL)));
    char buffer[260] = { 0 };
    sprintf_s(buffer, "%s/has/train", plates_folder_);
    auto has_file_train_list = getFiles(buffer);
    std::random_shuffle(has_file_train_list.begin(), has_file_train_list.end());
    sprintf_s(buffer, "%s/has/test", plates_folder_);
    auto has_file_test_list = getFiles(buffer);
    std::random_shuffle(has_file_test_list.begin(), has_file_test_list.end());
    sprintf_s(buffer, "%s/no/train", plates_folder_);
    auto no_file_train_list = getFiles(buffer);
    std::random_shuffle(no_file_train_list.begin(), no_file_train_list.end());
    sprintf_s(buffer, "%s/no/test", plates_folder_);
    auto no_file_test_list = getFiles(buffer);
    std::random_shuffle(no_file_test_list.begin(), no_file_test_list.end());
    fprintf(stdout, ">> Collecting train data...\n");
    for (auto file : has_file_train_list)
        train_file_list_.push_back({ file, kForward });
    for (auto file : no_file_train_list)
        train_file_list_.push_back({ file, kInverse });
    fprintf(stdout, ">> Collecting test data...\n");
    for (auto file : has_file_test_list)
        test_file_list_.push_back({ file, kForward });
    for (auto file : no_file_test_list)
        test_file_list_.push_back({ file, kInverse });
}
float countOfBigValue(Mat &mat, int iValue) {
    float iCount = 0.0;
    if (mat.rows > 1) {
        for (int i = 0; i < mat.rows; ++i) {
            if (mat.data[i * mat.step[0]] > iValue) {
                iCount += 1.0;
            }
        }
        return iCount;
    }
    else {
        for (int i = 0; i < mat.cols; ++i) {
            if (mat.data[i] > iValue) {
                iCount += 1.0;
            }
        }
        return iCount;
    }
}
Mat ProjectedHistogram(Mat img, int t, int threshold) {
    int sz = (t) ? img.rows : img.cols;
    Mat mhist = Mat::zeros(1, sz, CV_32F);
    for (int j = 0; j < sz; j++) {
        Mat data = (t) ? img.row(j) : img.col(j);
        mhist.at<float>(j) = countOfBigValue(data, threshold);
    }
    // Normalize histogram
    double min, max;
    minMaxLoc(mhist, &min, &max);
    if (max > 0)
        mhist.convertTo(mhist, -1, 1.0f / max, 0);
    return mhist;
}
Mat getHistogram(Mat in) {
    const int VERTICAL = 0;
    const int HORIZONTAL = 1;
    // Histogram features
    Mat vhist = ProjectedHistogram(in, VERTICAL,20);
    Mat hhist = ProjectedHistogram(in, HORIZONTAL,20);
    // Last 10 is the number of moments components
    int numCols = vhist.cols + hhist.cols;
    Mat out = Mat::zeros(1, numCols, CV_32F);
    int j = 0;
    for (int i = 0; i < vhist.cols; i++) {
        out.at<float>(j) = vhist.at<float>(i);
        j++;
    }
    for (int i = 0; i < hhist.cols; i++) {
        out.at<float>(j) = hhist.at<float>(i);
        j++;
    }
    return out;
}
void getHistogramFeatures(const Mat& image, Mat& features) {
    Mat grayImage;
    cvtColor(image, grayImage, cv::COLOR_RGB2GRAY);
    //grayImage = histeq(grayImage);
    Mat img_threshold;
    threshold(grayImage, img_threshold, 0, 255, cv::THRESH_OTSU + cv::THRESH_BINARY);
    //Mat img_threshold = grayImage.clone();
    //spatial_ostu(img_threshold, 8, 2, getPlateType(image, false));
    features = getHistogram(img_threshold);
}
//获得图片特征
void getColorFeatures(const Mat& src, Mat& features) {
    Mat src_hsv;
    //grayImage = histeq(grayImage);
    cvtColor(src, src_hsv, cv::COLOR_BGR2HSV);
    int channels = src_hsv.channels();
    int nRows = src_hsv.rows;
    // consider multi channel image
    int nCols = src_hsv.cols * channels;
    if (src_hsv.isContinuous()) {
        nCols *= nRows;
        nRows = 1;
    }
    const int sz = 180;
    int h[sz] = { 0 };
    uchar* p;
    for (int i = 0; i < nRows; ++i) {
        p = src_hsv.ptr<uchar>(i);
        for (int j = 0; j < nCols; j += 3) {
            int H = int(p[j]);      // 0-180
            if (H > sz - 1) H = sz - 1;
            if (H < 0) H = 0;
            h[H]++;
        }
    }
    Mat mhist = Mat::zeros(1, sz, CV_32F);
    for (int j = 0; j < sz; j++) {
        mhist.at<float>(j) = (float)h[j];
    }
    // Normalize histogram
    double min, max;
    minMaxLoc(mhist, &min, &max);
    if (max > 0)
        mhist.convertTo(mhist, -1, 1.0f / max, 0);
    features = mhist;
}
void getHistomPlusColoFeatures(const Mat& image, Mat& features) {
    Mat feature1, feature2;
    getHistogramFeatures(image, feature1);
    getColorFeatures(image, feature2);
    hconcat(feature1.reshape(1, 1), feature2.reshape(1, 1), features);
}
void test(cv::Ptr<cv::ml::StatModel> svm_) {
    if (test_file_list_.empty()) {
        prepare();
    }
    double count_all = test_file_list_.size();
    double ptrue_rtrue = 0;
    double ptrue_rfalse = 0;
    double pfalse_rtrue = 0;
    double pfalse_rfalse = 0;
    for (auto item : test_file_list_) {
        auto image = cv::imread(item.file);
        if (!image.data) {
            std::cout << "no" << std::endl;
            continue;
        }
        cv::Mat feature;
        getHistomPlusColoFeatures(image, feature);
        auto predict = int(svm_->predict(feature));
        //std::cout << "predict: " << predict << std::endl;
        auto real = item.label;
        if (predict == kForward && real == kForward) ptrue_rtrue++;
        if (predict == kForward && real == kInverse) ptrue_rfalse++;
        if (predict == kInverse && real == kForward) pfalse_rtrue++;
        if (predict == kInverse && real == kInverse) pfalse_rfalse++;
    }
    std::cout << "count_all: " << count_all << std::endl;
    std::cout << "ptrue_rtrue: " << ptrue_rtrue << std::endl;
    std::cout << "ptrue_rfalse: " << ptrue_rfalse << std::endl;
    std::cout << "pfalse_rtrue: " << pfalse_rtrue << std::endl;
    std::cout << "pfalse_rfalse: " << pfalse_rfalse << std::endl;
    double precise = 0;
    if (ptrue_rtrue + ptrue_rfalse != 0) {
        precise = ptrue_rtrue / (ptrue_rtrue + ptrue_rfalse);
        std::cout << "precise: " << precise << std::endl;
    }
    else {
        std::cout << "precise: "
            << "NA" << std::endl;
    }
    double recall = 0;
    if (ptrue_rtrue + pfalse_rtrue != 0) {
        recall = ptrue_rtrue / (ptrue_rtrue + pfalse_rtrue);
        std::cout << "recall: " << recall << std::endl;
    }
    else {
        std::cout << "recall: "
            << "NA" << std::endl;
    }
    double Fsocre = 0;
    if (precise + recall != 0) {
        Fsocre = 2 * (precise * recall) / (precise + recall);
        std::cout << "Fsocre: " << Fsocre << std::endl;
    }
    else {
        std::cout << "Fsocre: "
            << "NA" << std::endl;
    }
}
//数据准备
cv::Ptr<cv::ml::TrainData> tdata() {
    cv::Mat samples;
    std::vector<int> responses;
    for (auto f : train_file_list_) {
        auto image = cv::imread(f.file);
        if (!image.data) {
            fprintf(stdout, ">> Invalid image: %s  ignore.\n", f.file.c_str());
            continue;
        }
        cv::Mat feature;
        getHistomPlusColoFeatures(image, feature);
        feature = feature.reshape(1, 1);
        samples.push_back(feature);
        responses.push_back(int(f.label));
    }
    cv::Mat samples_, responses_;
    samples.convertTo(samples_, CV_32FC1);
    cv::Mat(responses).copyTo(responses_);
    return cv::ml::TrainData::create(samples_, cv::ml::SampleTypes::ROW_SAMPLE, responses_);
}
int main(int argc, char** argv)
{
    //init RT
    Ptr<cv::ml::RTrees> m_trees;
    m_trees = cv::ml::RTrees::create();
    m_trees->setMaxDepth(10);
    m_trees->setMinSampleCount(10);
    m_trees->setRegressionAccuracy(0);
    m_trees->setUseSurrogates(false);
    m_trees->setMaxCategories(2);//设置/获取最大的类别数,默认值为10;
    //m_trees->setPriors(0); //setPriors/getPriors函数:设置/获取先验概率数值,用于调整决策树的偏好,默认值为空的Mat;
    m_trees->setCalculateVarImportance(true);//方法setCalculateVarImportance()是用来设置是否在训练期间计算每个特征变量的重要性(会有一些额外时间开销)。
    m_trees->setActiveVarCount(false); //树节点随机选择特征子集的大小 setActiveVarCount()方法是用来设置给定节点上要测试特征集规模,这些特征集是随机选择的。如果用户未明确设置,则通常将其设置为总数量的平方根。
    m_trees->setTermCriteria({ cv::TermCriteria::MAX_ITER + cv::TermCriteria::EPS,100, 0.01});
    
    //数据准备
    prepare();
    if (train_file_list_.size() == 0) {
        fprintf(stdout, "No file found in the train folder!\n");
        fprintf(stdout, "You should create a folder named \"tmp\" in EasyPR main folder.\n");
        fprintf(stdout, "Copy train data folder(like \"SVM\") under \"tmp\". \n");
        return -1;
    }
    auto train_data = tdata();
    fprintf(stdout, ">> Training ML model, please wait...\n");
    //m_trees.train(features, CV_ROW_SAMPLE, categ_mat, cv::Mat(), cv::Mat(), cv::Mat(), cv::Mat(), m_rt_params);//这些参数可能 不是 全部都能够使用的
    m_trees->train(train_data);
    //mlmodel->save("mlmodel.xml");
    test(m_trees);
    cv::waitKey(0);
    return 0;
}


其中相关参数解释:
    m_trees->setMaxDepth(10);

弱分类器的数量不同于每个分类器的最大深度由setMaxDepth()控制,表示单个弱分类器可以具有的最大层数。
    m_trees->setMinSampleCount(10);

setMinSampleCount/getMinSampleCount函数:设置/获取最小训练样本数,默认值为10;。
    m_trees->setRegressionAccuracy(0);

setRegressionAccuracy/getRegressionAccuracy函数:设置/获取回归时用于终止的标准,默认值为0.01;
    m_trees->setUseSurrogates(false);

setUseSurrogates/getUseSurrogates函数:设置/获取是否使用surrogatesplits方法,默认值为false;

    m_trees->setMaxCategories(3);

setMaxCategories/getMaxCategories函数:设置/获取最大的类别数,默认值为10;
    //m_trees->setPriors(0); 

setPriors/getPriors函数:设置/获取先验概率数值,用于调整决策树的偏好,默认值为空的Mat;
    m_trees->setCalculateVarImportance(true);

方法setCalculateVarImportance()是用来设置是否在训练期间计算每个特征变量的重要性(会有一些额外时间开销)。
    m_trees->setActiveVarCount(false

树节点随机选择特征子集的大小 setActiveVarCount()方法是用来设置给定节点上要测试特征集规模,这些特征集是随机选择的。如果用户未明确设置,则通常将其设置为总数量的平方根。
目前参数的结果为:
【这几乎和瞎猜没有区别了,感觉RT的训练比svm要快一些,也可能是我参数选择错误】
三、项目实践
在比较著名的OpenCFU中,采用“随机森林”方法来检测分割出来的blob的性质。
“Yes, of course. The ML predictor is updated compared to the original publication. It is a Random forest classifier that sort contours. Each contour is represented by a vector of features created/defined in https://github.com/qgeissmann/OpenCFU/blob/master/src/processor/src/Features.cpp. The classifier predicts one of three levels: the object is {single colony, multiple colonies, background}.
【要想办法向作者要更多的信息】
四、反思小结
虽然相比较DL算法要简单, 但是在实现的过程中涉及到的参数配置,仍然是非常多的。如果没有相关的边界设置,那么很可能是训练不出来的。所以OpenCFU的重要价值就在这里。此外,确定数据集、选择训练方法、设置训练参数、最后融合形成一个新的定制算法,这个是CV工程师的价值。

参考:《RF,SVM和NN的优缺点https://blog.csdn.net/weixin_37933986/article/details/70160591


附件列表

OpenCV图像处理中的“机器学习"技术的使用的更多相关文章

  1. OpenCV图像处理中常用函数汇总(1)

    //俗话说:好记性不如烂笔头 //用到opencv 中的函数时往往会一时记不起这个函数的具体参数怎么设置,故在此将常用函数做一汇总: Mat srcImage = imread("C:/Us ...

  2. OpenCV图像处理中常用函数汇总(2)

    // 霍夫线变换 hough vector<Vec2f> lines;//定义一个矢量结构lines用于存放得到的线段矢量集合 HoughLines(dstImage,lines,,CV_ ...

  3. Zedboard甲诊opencv图像处理(三)

    整个工程进展到这一步也算是不容易吧,但技术含量也不怎么高,中间乱起八糟的错误太烦人了,不管怎么样,现在面临了最大的困难吧,图像处理算法.算法确实不好弄啊,虽然以前整过,但都不是针对图像的. 现在的图像 ...

  4. paper 119:[转]图像处理中不适定问题-图像建模与反问题处理

    图像处理中不适定问题 作者:肖亮博士 发布时间:09-10-25 图像处理中不适定问题(ill posed problem)或称为反问题(inverse Problem)的研究从20世纪末成为国际上的 ...

  5. 在opencv3中的机器学习算法

    在opencv3.0中,提供了一个ml.cpp的文件,这里面全是机器学习的算法,共提供了这么几种: 1.正态贝叶斯:normal Bayessian classifier    我已在另外一篇博文中介 ...

  6. OpenCV图像处理篇之边缘检测算子

    OpenCV图像处理篇之边缘检测算子 转载: http://xiahouzuoxin.github.io/notes/ 3种边缘检测算子 一阶导数的梯度算子 高斯拉普拉斯算子 Canny算子 Open ...

  7. 数据挖掘:实用机器学习技术P295页:

    数据挖掘:实用机器学习技术P295页: 在weka软件中的实验者界面中,新建好实验项目后,添加相应的实验数据,然后添加对应需要的分类算法 ,需要使用多个算法时候重复操作添加add algorithm. ...

  8. 入门系列之Scikit-learn在Python中构建机器学习分类器

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由信姜缘 发表于云+社区专栏 介绍 机器学习是计算机科学.人工智能和统计学的研究领域.机器学习的重点是训练算法以学习模式并根据数据进行预 ...

  9. Python+OpenCV图像处理(十四)—— 直线检测

    简介: 1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法.主要用来从图像中分离出具有某种相同特征的几何形状(如,直线 ...

随机推荐

  1. JavaScript var, let, const difference All In One

    JavaScript var, let, const difference All In One js var, let, const 区别 All In One 是否存在 hoisting var ...

  2. flutter & i18n & L10n & json

    flutter & i18n & L10n & json https://marketplace.visualstudio.com/items?itemName=esskar. ...

  3. npm init & npx create & yarn create

    npm init & npx create & yarn create https://create-react-app.dev/docs/getting-started/#creat ...

  4. html转png

    /*海报弹窗2018-3-14*/.diglogimg{position: fixed;top:0;left:0;z-index: 99;width: 100%;height: 100%;backgr ...

  5. [转]RoboWare Studio的使用和发布器/订阅器的编写与测试

    原文地址:https://blog.csdn.net/han_l/article/details/77772352,转载主要方便随时查阅,如有版权要求,请及时联系. 开始ROS学习之前,先按照官网教程 ...

  6. 解决margin-top无效问题

    当两个空的块级元素嵌套时,如果内部的块设置有margin-top属性,而且父元素没有下边解决方法所述的特征,那么内部块的margin-top属性会绑架父元素(即将margin-top传递凌驾给了父元素 ...

  7. 五分钟快速上手MyBatis

    MyBatis 是一款优秀的持久层框架,它支持自定义 SQL.存储过程以及高级映射. 免除了几乎所有的 JDBC 代码以及设置参数和获取结果集的工作. 可以通过简单的 XML 或注解来配置和映射,Ja ...

  8. 数理统计16:NP理论、似然比检验、假设检验与区间估计

    本文介绍Neyman-Pearson理论,这也是我们会见到的最常见假设检验问题类,这里第一Part的概念介绍略显枯燥,大家尽量理解即可.由于本系列为我独自完成的,缺少审阅,如果有任何错误,欢迎在评论区 ...

  9. 读取excel数据生成sql脚本

    package com.interact.util; import jxl.Cell; import jxl.Sheet; import jxl.Workbook; import jxl.read.b ...

  10. TERSUS无代码开发(笔记01)-按装下载和基础语法

    1.中国官网 https://tersus.cn/ 2.下载:https://tersus.cn/download/ 3.开发文档:https://tersus.cn/docs/ 4.基本元件说明 图 ...