【题目描述】

传送门

【题解】

  • 是时候讨论一下我在考场上是怎么将这道题写挂的了
  • 初看这道题毫无思路,先看看部分分吧
  • 一条链的情况?设k[i]表示前i个括号的方案数
  • 显然\(k[i]=k[i-1]+\)以i结尾的合法子串个数
  • 考虑求\(a[i]\)表示以\(i\)结尾的合法子串个数,显然如果第\(i\)个字符是\(‘('\),\(a[i]=0\)
  • 否则,看第\(i-1\)个字符,如果是\(‘(’\),则\(a[i]=a[i-2]\),否则就跳到与\(i-1\)匹配的\(b[i-1]\)处看\(b[i-1]-1\)是否是\('('\),如果不是,就再往前匹配······依次类推即可
  • 然而,我在考场上时,居然脑抽,只往前匹配了一次,并且就这样还通过了大样例···
//惨痛回忆
//d[i]=1表示是左括号,=-1表示是右括号
for(int i=1;i<=n;++i){
if(d[i]==1){
k[i]=k[i-1];
continue;
}
if(i==1) continue;
if(d[i-1]==1){
b[i]=i-1;
a[i]=a[i-2]+1;
}
else if(d[b[i-1]-1]==1) a[i]=a[b[i-1]-2]+1,b[i]=b[i-1]-1;
k[i]=k[i-1]+a[i];
}
//正解
for(int i=1;i<=n;++i){
if(d[i]==1){
k[i]=k[i-1];
continue;
}
if(i==1) continue;
int now=i-1;
while(d[now]!=1&&now)
now=b[now]-1;
if(now){
a[i]=a[now-1]+1;
b[i]=now;
}
k[i]=k[i-1]+a[i];
}
  • 正解,则只需要将链中通过-1向前推改为通过父子关系推即可

【代码】

#include<bits/stdc++.h>
using namespace std;
#define int long long
const int N=5e5+10;
inline int read(){
int x=0,f=1;
char ch=getchar();
while(!isdigit(ch)){if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*f;
}
int n,d[N],fa[N],a[N],b[N],k[N],ans;
signed main(){
n=read();
for(int i=1;i<=n;i++){
char ch=getchar();
while(ch!='('&&ch!=')') ch=getchar();
if(ch=='(') d[i]=1;
else d[i]=-1;
}
for(int i=2;i<=n;i++)
fa[i]=read();
for(int i=1;i<=n;i++){
if(i==1) continue;
if(d[i]==1) k[i]=k[fa[i]];
else{
int now=fa[i];
while(d[now]!=1&&now)
now=fa[b[now]];
if(now){
a[i]=a[fa[now]]+1;
b[i]=now;
}
k[i]=k[fa[i]]+a[i];
}
ans=ans^(i*k[i]);
}
cout<<ans<<endl;
return 0;
}

「CSP-S 2019」括号树的更多相关文章

  1. 上午小测3 T1 括号序列 && luogu P5658 [CSP/S 2019 D1T2] 括号树 题解

    前 言: 一直很想写这道括号树..毕竟是在去年折磨了我4个小时的题.... 上午小测3 T1 括号序列 前言: 原来这题是个dp啊...这几天出了好几道dp,我都没看出来,我竟然折磨菜. 考试的时候先 ...

  2. 「WC 2019」数树

    「WC 2019」数树 一道涨姿势的EGF好题,官方题解我并没有完全看懂,尝试用指数型生成函数和组合意义的角度推了一波.考场上只得了 44 分也暴露了我在数数的一些基本套路上的不足,后面的 \(\ex ...

  3. 【题解】#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT)

    [题解]#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT) 之前做这道题不理解,有一点走火入魔了,甚至想要一本近世代数来看,然后通过人类智慧思考后发现, ...

  4. loj #535. 「LibreOJ Round #6」花火 树状数组求逆序对+主席树二维数点+整体二分

    $ \color{#0066ff}{ 题目描述 }$ 「Hanabi, hanabi--」 一听说祭典上没有烟火,Karen 一脸沮丧. 「有的哦-- 虽然比不上大型烟花就是了.」 还好 Shinob ...

  5. Luogu P5103 「JOI 2016 Final」断层 树状数组or线段树+脑子

    太神仙了这题... 原来的地面上升,可以倒着操作(时光倒流),转化为地面沉降,最后的答案就是每个点的深度. 下面的1,2操作均定义为向下沉降(与原题意的变换相反): 首先这个题目只会操作前缀和后缀,并 ...

  6. 「模拟赛20180306」回忆树 memory LCA+KMP+AC自动机+树状数组

    题目描述 回忆树是一棵树,树边上有小写字母. 一次回忆是这样的:你想起过往,触及心底--唔,不对,我们要说题目. 这题中我们认为回忆是这样的:给定 \(2\) 个点 \(u,v\) (\(u\) 可能 ...

  7. CSP-S 2019 D1T2 括号树

    题目链接:[https://www.luogu.com.cn/problem/P5658] 思路: 这道题不难.(为什么我在考场上一点思路也没有??) 假设我们已经处理到树上的节点u(假设1为根节点) ...

  8. 「LOJ 3153」 「JOI Open 2019」三级跳

    题面 LOJ 3153 solution 对于任意一对\(A,B\),若区间\([A,B]\)中存在一个数权值大于\(A\)或\(B\),则用这个数来替代\(A\)或\(B\)显然更优. 故只需要考虑 ...

  9. Solution -「NOI 2020」「洛谷 P6776」超现实树

    \(\mathcal{Description}\)   Link.   对于非空二叉树 \(T\),定义 \(\operatorname{grow}(T)\) 为所有能通过若干次"替换 \( ...

随机推荐

  1. Nexus3常用功能备忘

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  2. Linux中文件与目录的区别

    普通文件:存储普通数据,一般就是字符串. 目录文件:存储了一张表,该表就是该目录文件下,所有文件名和索引(inode)的映射关系. 通常父目录会存储有它目录下文件的索引映射,说白了就是一张对应关系的索 ...

  3. Jenkins 凭证管理 - 看这一篇就够了~

    目录 Credential 类型 Credential 安全 Credential 创建 Credential ID 定义 Credential 使用 Credential 相关插件 最佳实践 许多三 ...

  4. D. Equalize the Remainders 解析(思維)

    Codeforce 999 D. Equalize the Remainders 解析(思維) 今天我們來看看CF999D 題目連結 題目 略,請直接看原題 前言 感覺要搞個類似\(stack\)的東 ...

  5. 震惊!你还不知道SpringBoot真正的启动引导类

    引言 SpringBoot项目中的启动类,一般都是XXApplication,例如「StatsApplication」,「UnionApplication」. 每个项目的启动类名称都不一样.但是它的启 ...

  6. Python爬虫之线程池

    详情点我跳转 关注公众号"轻松学编程"了解更多. 一.为什么要使用线程池? 对于任务数量不断增加的程序,每有一个任务就生成一个线程,最终会导致线程数量的失控,例如,整站爬虫,假设初 ...

  7. 《Clojure编程》笔记 第16章 Clojure与web

    目录 背景简述 第16章 Clojure与web 16.1 术语 16.2 Clojure栈 16.3 基石:Ring 16.3.1 请求与应答 16.3.2 适配函数 16.3.3 处理函数 16. ...

  8. 前端未来趋势之原生API:Web Components

    声明:未经允许,不得转载. Web Components 现世很久了,所以你可能听说过,甚至学习过,非常了解了.但是没关系,可以再重温一下,温故知新. 浏览器原生能力越来越强. js 曾经的 JQue ...

  9. SpringCloud之Gateway

    一.为什么选择SpringCloud Gateway而不是Zuul? Gateway和Zuul的职责一样,都承担着请求分发,类似Nginx分发到后端服务器. 1.SpingCloud Gateway ...

  10. SAM学习笔记&AC自动机复习

    形势所迫,一个对字符串深恶痛绝的鸽子又来更新了. SAM 后缀自动机就是一个对于字符串所有后缀所建立起的自动机.一些优良的性质可以使其完成很多字符串的问题. 其核心主要在于每个节点的状态和$endpo ...