LINK:最短母串

求母串的问题。不适合SAM。

可以先简化问题 考虑给出的n个字符串不存在包含关系。

那么 那么存在的情况 只可能有 两个字符串拼接起来能表示另外一个字符串 或者某个字符串的后缀可以当成别的字符串的前缀使用。

实际情况可能更加复杂。

观察上面的两种情况 容易AC自动机可以解决类似的问题。

在AC自动机上跑 就可以借用别的字符串的后缀当做自己的前缀进行使用了。

考虑建立出AC自动机 我们要求出一条路径 使得AC自动机上所有的终止节点都被经过。

当然也有特殊情况 就是 以终止节点为fail的节点 或者 以这个节点为fail的节点被经过。

考虑如何求出最短的路径。

可以发现这是一个最短路的问题。当做分层图来跑最短路。

对于上述的两种情况 由于是在 AC自动机的trie图上跑 所以可以满足。

考虑字典序 每次选择节点从字典序最小的选即可。

注意要预处理出s[x]数组 表示x这个节点所表示的所有终止节点的集合 注意 fail指针的s可以传递过来。

const int MAXN=610,maxn=1<<12;
int n,cnt,maxx;
char a[13][MAXN],b[MAXN],ans[MAXN];
int s[MAXN],q[1500010],vis[MAXN][maxn],pre[MAXN][maxn],w[1500010];
struct wy{int ch[26];int fail;}t[MAXN]; inline void insert(int x)
{
int len=strlen(a[x]+1);
int p=0;
rep(1,len,i)
{
int w=a[x][i]-'A';
if(!t[p].ch[w])t[p].ch[w]=++cnt;
p=t[p].ch[w];b[p]=a[x][i];
}
s[p]=s[p]|(1<<(x-1));
} inline void get_fail()
{
int l=0,r=0;
rep(0,25,i)if(t[0].ch[i])q[++r]=t[0].ch[i];
while(++l<=r)
{
int x=q[l];
rep(0,25,i)
{
int tn=t[x].ch[i];
if(tn)fail(tn)=t[fail(x)].ch[i],s[tn]|=s[t[fail(x)].ch[i]],q[++r]=tn;
else t[x].ch[i]=t[fail(x)].ch[i];
}
}
} inline void bfs()
{
int l=0,r=0;q[++r]=0;
vis[0][0]=0;w[r]=0;
while(++l<=r)
{
int x=q[l];
int xx=w[l];
rep(0,25,i)
{
int tn=t[x].ch[i];
if(tn)
{
int ss=s[tn]|xx;
if(vis[tn][ss]==-1)
{
pre[tn][ss]=l;
vis[tn][ss]=vis[x][xx]+1;
q[++r]=tn;w[r]=ss;
if(ss==maxx)
{
int w1=tn,w2=ss;
while(vis[tn][ss])
{
ans[vis[tn][ss]]=b[w1];
--vis[tn][ss];
int s1=q[pre[w1][w2]];
int s2=w[pre[w1][w2]];
w1=s1;w2=s2;
}
printf("%s",ans+1);
return;
}
}
}
}
}
} int main()
{
freopen("1.in","r",stdin);
gt(n);maxx=(1<<n)-1;
rep(1,n,i)gc(a[i]),insert(i);
get_fail();
memset(vis,-1,sizeof(vis));
bfs();return 0;
}

bzoj 1195 [HNOI2006]最短母串 bfs 状压 最短路 AC自动机的更多相关文章

  1. bzoj 1195: [HNOI2006]最短母串【状压dp】

    我有病吧--明明直接枚举是否匹配就可以非要写hash,然后果然冲突了(--我个非酋居然还敢用hash 设f[s][i]为已选串状态为s并且最后一个串是i,还有预处理出g[i][j]表示最长有长为g[i ...

  2. bzoj 1195: [HNOI2006]最短母串 爆搜

    1195: [HNOI2006]最短母串 Time Limit: 10 Sec  Memory Limit: 32 MBSubmit: 894  Solved: 288[Submit][Status] ...

  3. BZOJ 1195: [HNOI2006]最短母串

    1195: [HNOI2006]最短母串 Time Limit: 10 Sec  Memory Limit: 32 MBSubmit: 1346  Solved: 450[Submit][Status ...

  4. BZOJ 1195 [HNOI2006]最短母串 (Trie图+状压+bfs最短路)

    BZOJ1195 LOJ10061 题目大意:给你$n$个模式串,求一个最短且字典序最小的文本串并输出这个串,$n<=12,len<=50$ 首先对所有模式串构造$Trie$图,$Trie ...

  5. 【刷题】BZOJ 1195 [HNOI2006]最短母串

    Description 给定n个字符串(S1,S2,„,Sn),要求找到一个最短的字符串T,使得这n个字符串(S1,S2,„,Sn)都是T的子串. Input 第一行是一个正整数n(n<=12) ...

  6. BZOJ1195 HNOI2006最短母串(状压dp)

    按照子串出现的先后考虑.令f[i][j]为已经出现的字符串集合为i,最后一个出现的字符串为j时的最短串长,预处理一下任意两个串的最长重叠长度,转移显然.有点麻烦的是字典序,强行增加代码难度. 另一个比 ...

  7. BZOJ1195 [HNOI2006]最短母串 【状压dp】

    题目 给定n个字符串(S1,S2,„,Sn),要求找到一个最短的字符串T,使得这n个字符串(S1,S2,„,Sn)都是T的子串. 输入格式 第一行是一个正整数n(n<=12),表示给定的字符串的 ...

  8. BZOJ 1195: [HNOI2006]最短母串 AC自动机+状压+搜索

    思路比较直接. 由于 $n$ 很小,直接定义 $f[i][j]$ 表示当前在自动机中的节点 $i,$ 被覆盖串的集合为 $j$ 的方案数. #include <bits/stdc++.h> ...

  9. 【状态压缩dp】1195: [HNOI2006]最短母串

    一个清晰的思路就是状压dp:不过也有AC自动机+BFS的做法 Description 给定n个字符串(S1,S2,„,Sn),要求找到一个最短的字符串T,使得这n个字符串(S1,S2,„,Sn)都是T ...

随机推荐

  1. Golang从合并链表聊递归

    从合并链表聊递归 递归是工程师最常见的一种解决问题的方式,但是有时候不容易真正掌握.有人说是看起来很简单,自己写起来会费点劲. 最著名的例子就是斐波那契数列(Fibonacci sequence),通 ...

  2. 02-springboot整合elasticsearch初识

    1.ReactiveElasticsearchOperations     根据springboot官网提供的Elasticsearch操作,除了用rest风格的,还有reactiveElasticS ...

  3. 帝国の狂欢(种树)(可撤销DP)

    题目描述 马上就要开学了!!! 为了给回家的童鞋们接风洗尘,HZOI帝国的老大决定举办一场狂欢舞会. 然而HZOI帝国头顶上的HZ大帝国十分小气,并不愿意给同学们腾出太多的地方.所以留给同学们开par ...

  4. Python——assert、isinstance的用法

    1.assert 函数说明: assert语句是一种插入调试断点到程序的一种便捷的方式. 使用范例 assert 3 == 3 assert 1 == True assert (4 == 4) pri ...

  5. DLL 函数导出的规则和方法

    参考博客:https://blog.csdn.net/xiaominggunchuqu/article/details/72837760

  6. MySQL入门(引擎、数据类型、约束)

    MySQL入门(二) 表的引擎:驱动数据的方式 - 数据库优化 # 概要:引擎是建表规定的,提供给表使用,不是数据库的 # 展示所有引擎 show engines; # innodb(默认): 支持事 ...

  7. 数据可视化实例(六): 带线性回归最佳拟合线的散点图(matplotlib,pandas)

    https://datawhalechina.github.io/pms50/#/chapter3/chapter3 如果你想了解两个变量如何相互改变,那么最佳拟合线就是常用的方法. 下图显示了数据中 ...

  8. Python 实现邮件发送功能(初级)

    在我们日常项目中,会经常使用到邮件的发送功能,如何利用Python发送邮件也是一项必备的技能.本文主要讲述利用Python来发送邮件的一些基本操作. 本章主要包含知识点: 邮件发送原理简述即常用smt ...

  9. (四)学习了解OrchardCore笔记——将模块的名字添加到程序集的ModuleName

    关于如何将模块名添加到程序集的ModuleName说简单吧也简单,说不简单吧也不简单. 简单的原因是代码只有几行,不简单的原因是这些都不是c#,都是MSbuild的代码.这可真难为我了,所以这个地方我 ...

  10. DelayQueue源码分析

    DelayQueue<E>继承于AbstractQueue<E>实现BlockingQueue<E> 内部变量包括ReentrantLock 类型的lock以及条件 ...