问题 G: Factors of Factorial

时间限制: 1 Sec  内存限制: 128 MB
提交: 57  解决: 33
[提交][状态][讨论版][命题人:admin]

题目描述

You are given an integer N. Find the number of the positive divisors of N!, modulo 109+7.

Constraints
1≤N≤103

输入

The input is given from Standard Input in the following format:
N

输出

Print the number of the positive divisors of N!, modulo 109+7.

样例输入

3

样例输出

4

提示

There are four divisors of 3! =6: 1, 2, 3 and 6. Thus, the output should be 4.

 

水题,差点没做出来,就很尬。

阶乘拆成质因子乘积,根据每种质因子可以取的数量,由乘法原理得到答案

代码略

【数论】Factors of Factorial @upcexam6503的更多相关文章

  1. Factors of Factorial AtCoder - 2286 (N的阶乘的因子个数)(数论)

    Problem Statement You are given an integer N. Find the number of the positive divisors of N!, modulo ...

  2. B - Factors of Factorial

    Problem Statement You are given an integer N. Find the number of the positive divisors of N!, modulo ...

  3. AtCoder Beginner Contest 052 ABCD题

    A - Two Rectangles Time limit : 2sec / Memory limit : 256MB Score : 100 points Problem Statement The ...

  4. 【AtCoder】ARC067

    ARC067 C - Factors of Factorial 这个直接套公式就是,先求出来每个质因数的指数幂,然后约数个数就是 \((1 + e_{1})(1 + e_{2})(1 + e_{3}) ...

  5. UVa 884 - Factorial Factors

    题目:输出n!中素数因数的个数. 分析:数论.这里使用欧拉筛法计算素数,在计算过程中求解就可以. 传统筛法是利用每一个素数,筛掉自己的整数倍: 欧拉筛法是利用当前计算出的全部素数,乘以当前数字筛数: ...

  6. HDOJ-1124 Factorial 数论

    题意哇:求N!末尾多少个0. 很容易想到转化为求N!中5因子的个数.但是从数据范围来看必然不可能一个一个算出来. 所以这里借用数论的一个知识. 如果p是素数,那么n!中p因子的个数可以表示为1-n中整 ...

  7. zoj 3621 Factorial Problem in Base K 数论 s!后的0个数

    Factorial Problem in Base K Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onli ...

  8. hdu 1124 Factorial(数论)

    题意: 求n!的尾0的个数 分析: 0一定是由因子2和5相乘产生的: 2的个数显然大于5的个数,故只需统计因子5的个数 n/5不能完全表示n!中5的个数(egg: 25),应该n/=5后,累加上n/2 ...

  9. HDU 1124 Factorial (数论)

    http://acm.hdu.edu.cn/showproblem.php? pid=1124 題目好長好長,好可怕,看完腎都萎了,以後肯定活不長.我可不能死在這種小事上,小灰灰我勵志死在少女的超短裙 ...

随机推荐

  1. thinkphp5验证码使用

    simple 控制器中 /** * 生成验证码 * @param viod */ public function verify() { $captcha = new \think\captcha\Ca ...

  2. Linux查找当前目录5天的文件并打包

    find . -name "*.sh" -mtime -5 |xargs tar zcvf /tmp/log.tar.gz 解释: *.sh是查找以.sh结尾的文件,也可以是其他如 ...

  3. JSP基础知识➣结构及生命周期(一)

    概述 网络服务器需要一个JSP引擎,也就是一个容器来处理JSP页面.容器负责截获对JSP页面的请求.本教程使用内嵌JSP容器的Apache来支持JSP开发. JSP容器与Web服务器协同合作,为JSP ...

  4. dedecms首页入口的详细注释

    今天闲来无事,就拿来dede首页的文件给大家详细解释一遍,以便于新手学习,注释过程非常非常非常的详细,里面解释到dede表前缀#@__代替的原理.解释到dede很多自定义函数的具体位置和具体作用等等疑 ...

  5. Flink的容错

    checkpoint介绍 checkpoint机制是Flink可靠性的基石,可以保证Flink集群在某个算子因为某些原因(如 异常退出)出现故障时,能够将整个应用流图的状态恢复到故障之前的某一状态,保 ...

  6. tasksetCPU亲和力&docke容器资源限制

    [taskset详解] taskset设置cpu亲和力,taskset能够将一个或者多个进程绑定到一个或者多个处理器上运行 参数: 选项: -a, --all-tasks 在给定 pid 的所有任务( ...

  7. Hive| 压缩| 存储| 调优

    Hadoop压缩配置 修改Hadoop集群具有Snappy压缩方式: 查看hadoop支持的压缩方式 [kris@hadoop101 datas]$ hadoop checknative 将编译好的支 ...

  8. 063 SparkStream数据接收方式

    1.两种方式 2.Basic Source 由StreamingContext可以提供的API 上面做的wordcount中的方式就算是第一种方式. 3.Advanced Source 使用数据接收器 ...

  9. Python编程基础[函数和面向对象](三)

    Python 函数 函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段. 函数能提高应用的模块性,和代码的重复利用率.你已经知道Python提供了许多内建函数,比如print().但你也 ...

  10. SVM:随机产生100个点,建立模型,找出超平面方程——Jaosn niu

    import numpy as np import pylab as pl from sklearn import svm # we create 40 separable points #np.ra ...