Sep 26, 2016

I’ve seen a lot of confusion over the rules of tf.Graph and tf.Session in TensorFlow. It’s simple:

  • A graph defines the computation. It doesn’t compute anything, it doesn’t hold any values, it just defines the operations that you specified in your code.
  • A session allows to execute graphs or part of graphs. It allocates resources (on one or more machines) for that and holds the actual values of intermediate results and variables.

Let’s look at an example.

Defining the Graph

We define a graph with a variable and three operations: variable always returns the current value of our variable. initialize assigns the initial value of 42 to that variable. assign assigns the new value of 13 to that variable.

graph = tf.Graph()
with graph.as_default():
variable = tf.Variable(42, name='foo')
initialize = tf.initialize_all_variables()
assign = variable.assign(13)

On a side note: TensorFlow creates a default graph for you, so we don’t need the first two lines of the code above. The default graph is also what the sessions in the next section use when not manually specifying a graph.

Running Computations in a Session

To run any of the three defined operations, we need to create a session for that graph. The session will also allocate memory to store the current value of the variable.

with tf.Session(graph=graph) as sess:
sess.run(initialize)
sess.run(assign)
print(sess.run(variable))
# Output: 13

As you can see, the value of our variable is only valid within one session. If we try to query the value afterwards in a second session, TensorFlow will raise an error because the variable is not initialized there.

with tf.Session(graph=graph) as sess:
print(sess.run(variable))
# Error: Attempting to use uninitialized value foo

Of course, we can use the graph in more than one session, we just have to initialize the variables again. The values in the new session will be completely independent from the first one:

with tf.Session(graph=graph) as sess:
sess.run(initialize)
print(sess.run(variable))
# Output: 42

Hopefully this short workthrough helped you to better understand tf.Session. Feel free to ask questions in the comments.

From:http://danijar.com/what-is-a-tensorflow-session/

What is a TensorFlow Session?的更多相关文章

  1. tensorflow session 和 graph

    graph即tf.Graph(),session即tf.Session(),很多人经常将两者混淆,其实二者完全不是同一个东西. graph定义了计算方式,是一些加减乘除等运算的组合,类似于一个函数.它 ...

  2. tensorflow session会话控制

    import tensorflow as tf # create two matrixes matrix1 = tf.constant([[3,3]]) matrix2 = tf.constant([ ...

  3. 126、TensorFlow Session的执行

    # tf.Session.run 方法是一个执行tf.Operation或者计算tf.Tensor的一个主要的机制 # 你可以传递一个或者多个tf.Operation或者tf.Tensor对象来给tf ...

  4. Tensorflow源码解析2 -- 前后端连接的桥梁 - Session

    Session概述 1. Session是TensorFlow前后端连接的桥梁.用户利用session使得client能够与master的执行引擎建立连接,并通过session.run()来触发一次计 ...

  5. TensorFlow源代码学习--1 Session API reference

    学习TensorFlow源代码,先把API文档扒出来研究一下整体结构: 一下是文档内容的整理,简单翻译一下 原文地址:http://www.tcvpr.com/archives/181 TensorF ...

  6. TensorFlow 深度学习笔记 TensorFlow实现与优化深度神经网络

    转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程地址 视频/字幕下载 全 ...

  7. TensorFlow实现与优化深度神经网络

    TensorFlow实现与优化深度神经网络 转载请注明作者:梦里风林Github工程地址:https://github.com/ahangchen/GDLnotes欢迎star,有问题可以到Issue ...

  8. 学习笔记TF061:分布式TensorFlow,分布式原理、最佳实践

    分布式TensorFlow由高性能gRPC库底层技术支持.Martin Abadi.Ashish Agarwal.Paul Barham论文<TensorFlow:Large-Scale Mac ...

  9. tensorflow 从入门到上天教程一

    tensorflow 是一个google开源的深度学习的框架,执行性能良好,值得使用. caffe,caffe2 通过配置就可以拼凑一个深度学习框架,大大简化流程但也依赖大量的开源库,性能也不错.20 ...

随机推荐

  1. php 将两个数组进行相加 http://blog.csdn.net/lcstrive/article/details/38331487

    刚刚在网上看到一个提问. 数组Array ( [0] => 1 [1] => 2 )和数组Array ( [0] => 5 [1] => 6 ) 怎么让他们想加得出: 数组Ar ...

  2. 潭州课堂25班:Ph201805201 django 项目 第二十二课 文章主页 新闻列表页面滚动加载,轮播图后台实现 (课堂笔记)

    新建static/js/news/index.js文件 ,主要用于向后台发送请求, // 新建static/js/news/index.js文件 $(function () { // 新闻列表功能 l ...

  3. [CF1131F] Asya And Kittens

    Description: 给定n个点的序列,一开始有n个块,每次将两个块合并,并告诉你这两个块中的一对元素,求一种可能的原序列 Hint: \(n \le 1.5*10^5\) Solution: 实 ...

  4. Spring使用原生JDBC

    Spring使用原生JDBC 为加深对Spring解耦的理解,本次实验学习用Spring连接JDBC 一.POM配置文件 pom.xml <project xmlns="http:// ...

  5. R图表入门

    R图表入门 R语言最强的功能就是统计和作图了,在学习了基本语法之后,博主马上体验了一下R的图表功能 条形图 例1 H = c(7,12,28,3,41) M = c("Mar",& ...

  6. JS_高阶函数(sort)

    //javaScript sort()排序算法 //sort()方法默认把所有的元素转换成String再排序,字符串是根据ASCII进行排序的,所以会出现“10”排在“2”前面,或是小写字母“a”排在 ...

  7. .NET语言的编译过程:中间语言(IL)和即时编译器(JIT)

    .NET语言的编译分为两个阶段.首先高级语言被编译成一种称作IL的中间语言,与高级语言相比,IL更像是机器语言,然而,IL却包含一些抽象概念(比如:类.异常),这也是这种语言被称为中间语言的原因.IL ...

  8. Vue 2.3、2.4 知识点小结

    2.3 style 多重值: <div :style="{ display: ['-webkit-box', '-ms-flexbox', 'flex'] }">< ...

  9. ASP.NET Core Docker jexus nginx部署-CentOS实践版

    本文用图文的方式记录了我自己搭建centos+asp.net core + docker + jexus + nginx的整个过程,希望对有同样需求的朋友有一定的参考作用. 本文主要内容如下: cen ...

  10. ARM 技术文档

    1. 相关链接 ARM官网: http://infocenter.arm.com/ 比较有用的几个目录: ARM Technical Support Knowledge Articles  一些关于A ...