Sep 26, 2016

I’ve seen a lot of confusion over the rules of tf.Graph and tf.Session in TensorFlow. It’s simple:

  • A graph defines the computation. It doesn’t compute anything, it doesn’t hold any values, it just defines the operations that you specified in your code.
  • A session allows to execute graphs or part of graphs. It allocates resources (on one or more machines) for that and holds the actual values of intermediate results and variables.

Let’s look at an example.

Defining the Graph

We define a graph with a variable and three operations: variable always returns the current value of our variable. initialize assigns the initial value of 42 to that variable. assign assigns the new value of 13 to that variable.

graph = tf.Graph()
with graph.as_default():
variable = tf.Variable(42, name='foo')
initialize = tf.initialize_all_variables()
assign = variable.assign(13)

On a side note: TensorFlow creates a default graph for you, so we don’t need the first two lines of the code above. The default graph is also what the sessions in the next section use when not manually specifying a graph.

Running Computations in a Session

To run any of the three defined operations, we need to create a session for that graph. The session will also allocate memory to store the current value of the variable.

with tf.Session(graph=graph) as sess:
sess.run(initialize)
sess.run(assign)
print(sess.run(variable))
# Output: 13

As you can see, the value of our variable is only valid within one session. If we try to query the value afterwards in a second session, TensorFlow will raise an error because the variable is not initialized there.

with tf.Session(graph=graph) as sess:
print(sess.run(variable))
# Error: Attempting to use uninitialized value foo

Of course, we can use the graph in more than one session, we just have to initialize the variables again. The values in the new session will be completely independent from the first one:

with tf.Session(graph=graph) as sess:
sess.run(initialize)
print(sess.run(variable))
# Output: 42

Hopefully this short workthrough helped you to better understand tf.Session. Feel free to ask questions in the comments.

From:http://danijar.com/what-is-a-tensorflow-session/

What is a TensorFlow Session?的更多相关文章

  1. tensorflow session 和 graph

    graph即tf.Graph(),session即tf.Session(),很多人经常将两者混淆,其实二者完全不是同一个东西. graph定义了计算方式,是一些加减乘除等运算的组合,类似于一个函数.它 ...

  2. tensorflow session会话控制

    import tensorflow as tf # create two matrixes matrix1 = tf.constant([[3,3]]) matrix2 = tf.constant([ ...

  3. 126、TensorFlow Session的执行

    # tf.Session.run 方法是一个执行tf.Operation或者计算tf.Tensor的一个主要的机制 # 你可以传递一个或者多个tf.Operation或者tf.Tensor对象来给tf ...

  4. Tensorflow源码解析2 -- 前后端连接的桥梁 - Session

    Session概述 1. Session是TensorFlow前后端连接的桥梁.用户利用session使得client能够与master的执行引擎建立连接,并通过session.run()来触发一次计 ...

  5. TensorFlow源代码学习--1 Session API reference

    学习TensorFlow源代码,先把API文档扒出来研究一下整体结构: 一下是文档内容的整理,简单翻译一下 原文地址:http://www.tcvpr.com/archives/181 TensorF ...

  6. TensorFlow 深度学习笔记 TensorFlow实现与优化深度神经网络

    转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程地址 视频/字幕下载 全 ...

  7. TensorFlow实现与优化深度神经网络

    TensorFlow实现与优化深度神经网络 转载请注明作者:梦里风林Github工程地址:https://github.com/ahangchen/GDLnotes欢迎star,有问题可以到Issue ...

  8. 学习笔记TF061:分布式TensorFlow,分布式原理、最佳实践

    分布式TensorFlow由高性能gRPC库底层技术支持.Martin Abadi.Ashish Agarwal.Paul Barham论文<TensorFlow:Large-Scale Mac ...

  9. tensorflow 从入门到上天教程一

    tensorflow 是一个google开源的深度学习的框架,执行性能良好,值得使用. caffe,caffe2 通过配置就可以拼凑一个深度学习框架,大大简化流程但也依赖大量的开源库,性能也不错.20 ...

随机推荐

  1. [CC-COUPLES]Couples sit next to each other

    [CC-COUPLES]Couples sit next to each other 题目大意: 有\(n(n\le5\times10^5)\)对小伙伴共\(2n\)个人坐成一圈.刚开始编号为\(i\ ...

  2. Charles通用破解激活办法

    Charles通用破解激活办法 适用于Charles任意版本的注册码,谁还会想要使用破解版呢. 目前最新版Charles 4.2.8. Registered Name: https://zhile.i ...

  3. DOCKER上安装HASSIO

    更新源列表命令 sudo apt-get update sudo apt-get upgrade –y This is the list of packages you need to have av ...

  4. 开车旅行 [NOIP 2012]

    Description 小A 和小B决定利用假期外出旅行,他们将想去的城市从1到N 编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 i的海拔高度为Hi,城市 i ...

  5. Unity 显示FPS(C#语言)

    直接上脚本了: using UnityEngine; using System.Collections; public class ShowFPS : MonoBehaviour { //设置帧率 A ...

  6. 小甲鱼Python第五讲课后习题

    0.Python中,int表示整型 bool:布尔类型 float:浮点型 str:字符串类型 1.为什么布尔类型(bool)的TRUE和FALSE分别用0和1表示? 计算机只认识二进制,由于二进制只 ...

  7. MySql 数据库安装、环境变量配置 以及 本地连接

    一.准备 MySql 的安装包,这里我从网上下载的是 mysql-installer-community-5.6.21.1.msi,如下图:     二.,双击 mysql-installer-com ...

  8. 【转】java日志组件介绍(common-logging,log4j,slf4j,logback )

    common-logging common-logging是apache提供的一个通用的日志接口.用户可以自由选择第三方的日志组件作为具体实现,像log4j,或者jdk自带的logging, comm ...

  9. 【springboot】【redis】springboot+redis实现发布订阅功能,实现redis的消息队列的功能

    springboot+redis实现发布订阅功能,实现redis的消息队列的功能 参考:https://www.cnblogs.com/cx987514451/p/9529611.html 思考一个问 ...

  10. 枚举进行位运算 枚举组合z

    枚举进行位运算--枚举组合 public enum MyEnum { MyEnum1 = , //0x1 MyEnum2 = << , //0x2 MyEnum3 = << , ...