一、基础正则化函数

tf.contrib.layers.l1_regularizer(scale, scope=None)

返回一个用来执行L1正则化的函数,函数的签名是func(weights)
参数:

  • scale: 正则项的系数.
  • scope: 可选的scope name

tf.contrib.layers.l2_regularizer(scale, scope=None)

先看看tf.contrib.layers.l2_regularizer(weight_decay)都执行了什么:

import tensorflow as tf
sess=tf.Session()
weight_decay=0.1
tmp=tf.constant([0,1,2,3],dtype=tf.float32)
"""
l2_reg=tf.contrib.layers.l2_regularizer(weight_decay)
a=tf.get_variable("I_am_a",regularizer=l2_reg,initializer=tmp)
"""
#**上面代码的等价代码
a=tf.get_variable("I_am_a",initializer=tmp)
a2=tf.reduce_sum(a*a)*weight_decay/2;
a3=tf.get_variable(a.name.split(":")[0]+"/Regularizer/l2_regularizer",initializer=a2)
tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES,a2)
#**
sess.run(tf.global_variables_initializer())
keys = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
for key in keys:
print("%s : %s" %(key.name,sess.run(key)))
我们很容易可以模拟出tf.contrib.layers.l2_regularizer都做了什么,不过会让代码变丑。
以下比较完整实现L2 正则化。
import tensorflow as tf
sess=tf.Session()
weight_decay=0.1 #(1)定义weight_decay
l2_reg=tf.contrib.layers.l2_regularizer(weight_decay) #(2)定义l2_regularizer()
tmp=tf.constant([0,1,2,3],dtype=tf.float32)
a=tf.get_variable("I_am_a",regularizer=l2_reg,initializer=tmp) #(3)创建variable,l2_regularizer复制给regularizer参数。
#目测REXXX_LOSSES集合
#regularizer定义会将a加入REGULARIZATION_LOSSES集合
print("Global Set:")
keys = tf.get_collection("variables")
for key in keys:
print(key.name)
print("Regular Set:")
keys = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
for key in keys:
print(key.name)
print("--------------------")
sess.run(tf.global_variables_initializer())
print(sess.run(a))
reg_set=tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) #(4)则REGULARIAZTION_LOSSES集合会包含所有被weight_decay后的参数和,将其相加
l2_loss=tf.add_n(reg_set)
print("loss=%s" %(sess.run(l2_loss)))
"""
此处输出0.7,即:
weight_decay*sigmal(w*2)/2=0.1*(0*0+1*1+2*2+3*3)/2=0.7
其实代码自己写也很方便,用API看着比较正规。
在网络模型中,直接将l2_loss加入loss就好了。(loss变大,执行train自然会decay)
"""

二、添加正则化方法

a、原始办法

正则化常用到集合,下面是最原始的添加正则办法(直接在变量声明后将之添加进'losses'集合或tf.GraphKeys.LOESSES也行):

import tensorflow as tf
import numpy as np def get_weights(shape, lambd): var = tf.Variable(tf.random_normal(shape), dtype=tf.float32)
tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(lambd)(var))
return var x = tf.placeholder(tf.float32, shape=(None, 2))
y_ = tf.placeholder(tf.float32, shape=(None, 1))
batch_size = 8
layer_dimension = [2, 10, 10, 10, 1]
n_layers = len(layer_dimension)
cur_lay = x
in_dimension = layer_dimension[0] for i in range(1, n_layers):
out_dimension = layer_dimension[i]
weights = get_weights([in_dimension, out_dimension], 0.001)
bias = tf.Variable(tf.constant(0.1, shape=[out_dimension]))
cur_lay = tf.nn.relu(tf.matmul(cur_lay, weights)+bias)
in_dimension = layer_dimension[i] mess_loss = tf.reduce_mean(tf.square(y_-cur_lay))
tf.add_to_collection('losses', mess_loss)
loss = tf.add_n(tf.get_collection('losses'))

b、tf.contrib.layers.apply_regularization(regularizer, weights_list=None)

先看参数

  • regularizer:就是我们上一步创建的正则化方法
  • weights_list: 想要执行正则化方法的参数列表,如果为None的话,就取GraphKeys.WEIGHTS中的weights.

函数返回一个标量Tensor,同时,这个标量Tensor也会保存到GraphKeys.REGULARIZATION_LOSSES中.这个Tensor保存了计算正则项损失的方法.

tensorflow中的Tensor是保存了计算这个值的路径(方法),当我们run的时候,tensorflow后端就通过路径计算出Tensor对应的值

现在,我们只需将这个正则项损失加到我们的损失函数上就可以了.

如果是自己手动定义weight的话,需要手动将weight保存到GraphKeys.WEIGHTS中,但是如果使用layer的话,就不用这么麻烦了,别人已经帮你考虑好了.(最好自己验证一下tf.GraphKeys.WEIGHTS中是否包含了所有的weights,防止被坑)

c、使用slim

使用slim会简单很多:

 with slim.arg_scope([slim.conv2d, slim.fully_connected],
activation_fn=tf.nn.relu,
weights_regularizer=slim.l2_regularizer(weight_decay)):
pass

此时添加集合为tf.GraphKeys.REGULARIZATION_LOSSES。

『TensorFlow』正则化添加方法整理的更多相关文章

  1. 『TensorFlow』专题汇总

    TensorFlow:官方文档 TensorFlow:项目地址 本篇列出文章对于全零新手不太合适,可以尝试TensorFlow入门系列博客,搭配其他资料进行学习. Keras使用tf.Session训 ...

  2. 『TensorFlow』滑动平均

    滑动平均会为目标变量维护一个影子变量,影子变量不影响原变量的更新维护,但是在测试或者实际预测过程中(非训练时),使用影子变量代替原变量. 1.滑动平均求解对象初始化 ema = tf.train.Ex ...

  3. 『TensorFlow』模型保存和载入方法汇总

    『TensorFlow』第七弹_保存&载入会话_霸王回马 一.TensorFlow常规模型加载方法 保存模型 tf.train.Saver()类,.save(sess, ckpt文件目录)方法 ...

  4. 『TensorFlow』读书笔记_进阶卷积神经网络_分类cifar10_上

    完整项目见:Github 完整项目中最终使用了ResNet进行分类,而卷积版本较本篇中结构为了提升训练效果也略有改动 本节主要介绍进阶的卷积神经网络设计相关,数据读入以及增强在下一节再与介绍 网络相关 ...

  5. 『TensorFlow』TFR数据预处理探究以及框架搭建

    一.TFRecord文件书写效率对比(单线程和多线程对比) 1.准备工作 # Author : Hellcat # Time : 18-1-15 ''' import os os.environ[&q ...

  6. 『TensorFlow』SSD源码学习_其一:论文及开源项目文档介绍

    一.论文介绍 读论文系列:Object Detection ECCV2016 SSD 一句话概括:SSD就是关于类别的多尺度RPN网络 基本思路: 基础网络后接多层feature map 多层feat ...

  7. 『TensorFlow』流程控制

    『PyTorch』第六弹_最小二乘法对比PyTorch和TensorFlow TensorFlow 控制流程操作 TensorFlow 提供了几个操作和类,您可以使用它们来控制操作的执行并向图中添加条 ...

  8. 『TensorFlow』读书笔记_降噪自编码器

    『TensorFlow』降噪自编码器设计  之前学习过的代码,又敲了一遍,新的收获也还是有的,因为这次注释写的比较详尽,所以再次记录一下,具体的相关知识查阅之前写的文章即可(见上面链接). # Aut ...

  9. 『TensorFlow』梯度优化相关

    tf.trainable_variables可以得到整个模型中所有trainable=True的Variable,也是自由处理梯度的基础 基础梯度操作方法: tf.gradients 用来计算导数.该 ...

随机推荐

  1. maven build resources

    1.在我用springboot+mytatis时,生成完mapper后,然后访问网站总是报错 错误信息: Servlet.service() for servlet [dispatcherServle ...

  2. 浅谈Java中的关键字

    谈到final关键字,想必很多人都不陌生,在使用匿名内部类的时候可能会经常用到final关键字.另外,Java中的String类就是一个final类,那么今天我们就来了解final这个关键字的用法. ...

  3. repo 获取各个库的tag代码或者分支代码

    关于mainfest.xml中的参数格式和说明,可以自己查阅,此处不详细写,我们知道project中的reversion可以指定分支,tag,commitid等,那么如何书写呢? 首先克隆mainfe ...

  4. [Android] websocket客户端开发

    为了能够在H5和APP都保持同一套长连接接口,因为采用websocket协议作为开发 使用的第三方库是:https://github.com/TakahikoKawasaki/nv-websocket ...

  5. Form数据迁移

    --------------------------------------添加linkserver--------------------------------------- --EXEC mas ...

  6. 史上最全python面试题详解(一)(附带详细答案(持续更新))

    1.简述解释型和编译型编程语言? 概念: 编译型语言:把做好的源程序全部编译成二进制代码的可运行程序.然后,可直接运行这个程序. 解释型语言:把做好的源程序翻译一句,然后执行一句,直至结束! 区别: ...

  7. springMVC学习之路2-文件上传

    springMVC的上传文件方式一共有两种,下面听我简单介绍一下: 1.1 首先配置springAnnotation-servlet.xml,新增一个multipartResolver处理器,并定义默 ...

  8. MySQL插入更新_ON DUPLICATE KEY UPDATE

    前提:操作的表具有主键或唯一索引 INSERT INTO:表中不存在对应的记录,则插入:若存在对应的记录,则报错: INSERT INTO IGNORE:表中不存在对应的记录,则插入:若存在对应的记录 ...

  9. 扩容 swap 分区

    扩容 swap 分区 题:添加一个 swap 分区在您的系统中添加一个大小为 512 MiB 的 swap 分区.当您的系统启动时,swap 分区应 该可以自动挂载.不要移除或者修改其他已经存在于您的 ...

  10. CSS 边框样式

    CSS 边框样式 直线边框样式 <html> <body> <!-- border: 1px 边框像素为1.solid red 边框样式以及边框颜色 --> < ...