传送门

https://www.cnblogs.com/violet-acmer/p/9852294.html

题解:

  这道题是石子合并问题稍微升级版

  这道题和经典石子合并问题的不同在于,经典的石子合并问题是一排,而此问题是一个圈,也就意味着最后一堆石子可已选择第一堆石子,那这要怎么做呢?

  其实方法很简单,在n堆石子后额外增加(n-1)堆石子,这(n-1)堆石子不是随意造的,其个数与前(n-1)堆石子一一对应。

  然后,就是经典的石子合并问题了。

  对于 1 到 2*n-1堆石子,进行区间最优解的查找即可。

  详情请看大佬博客:https://blog.csdn.net/u013512086/article/details/54565572

AC代码:

 #include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define INF 0x3f3f3f
#define mem(a,b) memset(a,b,sizeof(a))
const int maxn=+; int n;
int a[maxn];
int dp[maxn][maxn];//dp[i][j]:讲区间[i,j]堆石子合并所需的最小(或大)的花费
int sum[maxn];//前缀和 void Solve()
{
//求解最小花费
mem(dp,INF);
for(int i=;i <= *n;++i)
dp[i][i]=;
for(int len=;len <= n;++len)
{
for(int i=;i <= *n-len;++i)
{
int j=i+len-;
for(int k=i;k < j;++k)
dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+][j]+sum[j]-sum[i-]);
}
}
int minRes=INF;
for(int i=;i <= n;++i)
minRes=min(minRes,dp[i][i+n-]);
printf("%d\n",minRes);
//求解最大花费
mem(dp,);
for(int len=;len <= n;++len)
{
for(int i=;i <= *n-len;++i)
{
int j=i+len-;
for(int k=i;k < j;++k)
dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+][j]+sum[j]-sum[i-]);
}
}
int maxRes=;
for(int i=;i <= n;++i)
maxRes=max(maxRes,dp[i][i+n-]);
printf("%d\n",maxRes);
}
int main()
{
scanf("%d",&n);
mem(sum,);
for(int i=;i <= n;++i)
scanf("%d",a+i),a[n+i]=a[i];
for(int i=;i <= *n;++i)
sum[i]=sum[i-]+a[i];
Solve();
}

    

洛谷 P1880 [NOI1995] 石子合并(区间DP)的更多相关文章

  1. 洛谷 P1880 [NOI1995]石子合并 题解

    P1880 [NOI1995]石子合并 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试 ...

  2. P1880 [NOI1995]石子合并[区间dp+四边形不等式优化]

    P1880 [NOI1995]石子合并 丢个地址就跑(关于四边形不等式复杂度是n方的证明) 嗯所以这题利用决策的单调性来减少k断点的枚举次数.具体看lyd书.这部分很生疏,但是我还是选择先不管了. # ...

  3. P1880 [NOI1995]石子合并 区间dp

    P1880 [NOI1995]石子合并 #include <bits/stdc++.h> using namespace std; ; const int inf = 0x3f3f3f3f ...

  4. 洛谷P1880 [NOI1995]石子合并 纪中21日c组T4 2119. 【2016-12-30普及组模拟】环状石子归并

    洛谷P1880 石子合并 纪中2119. 环状石子归并 洛谷传送门 题目描述1 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石 ...

  5. 洛谷P1880 [NOI1995] 石子合并 [DP,前缀和]

    题目传送门 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆 ...

  6. [洛谷P1880][NOI1995]石子合并

    区间DP模板题 区间DP模板Code: ;len<=n;len++) { ;i<=*n-;i++) //区间左端点 { ; //区间右端点 for(int k=i;k<j;k++) ...

  7. HDU4632 Poj2955 括号匹配 整数划分 P1880 [NOI1995]石子合并 区间DP总结

    题意:给定一个字符串 输出回文子序列的个数    一个字符也算一个回文 很明显的区间dp  就是要往区间小的压缩! #include<bits/stdc++.h> using namesp ...

  8. 洛谷 P1880 [NOI1995]石子合并

    题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...

  9. P1880 [NOI1995]石子合并 区间dp+拆环成链

    思路 :一道经典的区间dp  唯一不同的时候 终点和起点相连  所以要拆环成链  只需要把1-n的数组在n+1-2*n复制一遍就行了 #include<bits/stdc++.h> usi ...

随机推荐

  1. Jenkins新建项目中源码管理Repository URL使用Git报错:Failed to connect to repository : Command "git ls-remote -h......

    之前部署了Gitlab+Gerrit+Jenkins持续集成环境,但在Jenkins中新建项目的源码管理"Repository URL"中添加git地址环节出现了问题,信息为&qu ...

  2. Hybrid APP基础篇(一)->什么是Hybrid App

    最新更新 一个开源的快速混合开发框架:https://github.com/quickhybrid/quickhybrid Android.iOS.JS三端内容初步都已经完成,有完善的设计思路.教程以 ...

  3. C程序设计教学小结(选择结构)

    1. 函数使用的三个问题 函数声明语句   void add();   或  int add(int x,int y); 函数调用            add();     c=add(a,b) 函 ...

  4. Jquery 组 标签页

    <!DOCTYPE html><html lang="zh-cn"><head> <meta charset="utf-8&qu ...

  5. Spring学习14-源码下载地址

    今天想下载一下Spring的源代码,登录到Spring官网,傻眼了,根本找不到下载的地方!费了九牛二虎之力在网上找到了一个下载地址,记下来,免得下次再次傻找. http://s3.amazonaws. ...

  6. Bootstrap学习目录

    前面的话 Bootstrap与CSS的关系,类似于javascript与jQuery的关系,原理与应用的关系.只是jQuery不再火爆,而Bootstrap依然火热,它在github有着超过100万的 ...

  7. codeforces518B

    Tanya and Postcard CodeForces - 518B 有个小女孩决定给他的爸爸寄明信片.她已经想好了一句话(即长度为n的字符串s),包括大写和小写英文字母.但是他不会写字,所以她决 ...

  8. ZJOI2019 Day1游记

    退役吧垃圾 考的再烂还是要把自己捡起来 如果不想让自己的OI生涯就到这里止步的话 就给我滚去拿剩下的300分吧 浙江省前十六,学校前五,day1比别人差一百多分.如果这样还能进省队的话,我就成为传说了 ...

  9. AWS、Azure和Google的云容器注册表有什么区别?

    亚马逊云计算服务(AWS).谷歌云服务和微软Azure,这三大公共云平台都提供Docker容器注册表.虽然他们的产品看起来很相似,但开发人员在做出选择之前,应该先了解价格和功能方面的差异. 公共云供应 ...

  10. Systemed systemctl 创建服务 详解

    原文:http://www.ruanyifeng.com/blog/2016/03/systemd-tutorial-commands.html 一.由来 历史上,Linux 的启动一直采用init进 ...