大步小步走算法处理这样的问题:

A^x = B (mod C)

求满足条件的最小的x(可能无解)

其中,A/B/C都可以是很大的数(long long以内)

先分类考虑一下:

当(A,C)==1 即A、C互质的时候,

叫他BSGS:

A一定存在mod C意义下的逆元,所以,A^k也存在。

注意到,A^(fai(c)) = 1 (mod c)  ......................(fai(c)表示c的欧拉函数值)

所以,A^(fai(c)+1) = A (mod C) 就重新回去了。

所以,最小的x值,如果有解,必然小于等于fai(c)

枚举显然是不可靠的。

这样考虑:将对数值分解:x=x1+x2;

将A^(0~sqrt(fai(c)) mod C 算出来,加入到一个hash表中,

这样,A^x=A^(x1+x2) 让 x1 取成:0*sqrt(fai(c) ,1*(sqrt(fai(c)) ,2*(sqrt(fai(c)) ... fai(c)

A^(p*sqrt(fai(c))+x2) = B mod C

因为,A^k都存在逆元,所以可以直接把A^(sqrt(fai(c))逆元预处理出来,再在每次循环p的时候,把A^(p*sqrt(fai(c))除过去;

即:A^x2 = B*ni mod C

对于这个B*ni(取模后),只需要在之前处理的hash表中查一下有没有出现就可以、

出现了就对应一个x2,对于x ,就是p*sqrt(fai(c))+x2

否则继续循环p

为了保证这个x是最小的x,

我们在建hash表的时候,是x的值从小到大建,如果这个值之前没有出现,就插入,否则不进行操作(相当于用小的x覆盖大的)

②我们分块的时候,从小到大枚举p,所以找到的第一个就是答案。

如果一直没有找到,就返回无解。

复杂度:O(sqrt(c)) (哈希表用邻接表挂链实现,不用map的log复杂度)

BSGS代码:poj2417(这个保证了模数是质数(直接用的费马),但是其实不一定是)

#include<cstdio>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<map>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=;
const int mod=;
ll p,A,B;
ll ni[N];
struct node{
int nxt[mod],val[mod],id[mod],cnt;
int hd[mod];
void init(){
memset(nxt,,sizeof nxt),memset(val,,sizeof val);cnt=;
memset(hd,,sizeof hd);memset(id,,sizeof id);
}
void insert(ll x,int d){
int st=x%mod;
for(int i=hd[st];i;i=nxt[i]){
if(val[i]==x) return;
}
val[++cnt]=x;nxt[cnt]=hd[st];id[cnt]=d;hd[st]=cnt;
}
int find(ll x){
int st=x%mod;
for(int i=hd[st];i;i=nxt[i]){
if(val[i]==x) return id[i];
}
return -;
}
}ha;
map<ll,int>mp;
ll qm(ll a,ll b){
ll ret=,base=a;
while(b){
if(b&) ret=(ret*base)%p;
base=(base*base)%p;
b>>=;
}
return ret;
}
ll BSGS(){
ll up=(ll)floor(sqrt(1.0*p-))+;
cout<<up<<endl;
ni[]=;
for(int i=;i<=up;i++){
ni[i]=qm(qm(A,i*up),p-);
}
for(int i=;i<up;i++){
ll t=qm(A,i);
ha.insert(t,i);
}
for(int i=;i<=up;i++){
if(i*up>p-) break;
ll ri=B*ni[i]%p;
ll ret=ha.find(ri);
if(ret>=) return i*up+ret;
}
return -;
}
int main()
{
while(scanf("%lld",&p)!=EOF){
scanf("%lld%lld",&A,&B);
ha.init();
ll ret=BSGS();
if(ret==-){
puts("no solution");
}
else{
printf("%lld\n",ret);
}
}
return ;
}

BSGS

EXBSGS:

如果(A,C)!=1怎么办?

转化成互质的!!

设g=gcd(A,C)
A^x = B mod C

如果B不能被g整除,就break掉;(后面已经没意义了)

否则同除以g A^(x-1) * A/g = B/g mod C/g

这个是等价的变形。

注意到,A/g C/g 是互质的。

设g=gcd(A, C/g)

循环处理。。。。。

直到g == 1结束。

设进行了num次,现在得到的等式是:

A^(x-num) * A/πg = B/πg mod C/πg

现在,A和C/πg是互质的了。

A/πg也和C/πg互质,所以直接转化成逆元,乘过去。

形式是这样的:

A^x = NB mod C

其中(A,C)=1可以用BSGS了。

注意:这里求出来的是x>=num 的最小解

我们还要暴力枚举一发x = 0~num

直接通过原式子验证。

因为num一定是log级别的,所以不费事。

EXBSGS代码:poj3243

#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<iostream>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
const int N=;//sqrt fai()
const int mod=;
ll C,A,B;
ll ni[N];
struct node{
int nxt[mod],val[mod],id[mod],cnt;
int hd[mod];
void init(){
memset(nxt,,sizeof nxt),memset(val,,sizeof val),memset(id,,sizeof id);
memset(hd,,sizeof hd),cnt=;
}
void insert(ll x,int d){
int st=x%mod;
for(int i=hd[st];i;i=nxt[i]){
if(val[i]==x) return;
}
val[++cnt]=x,nxt[cnt]=hd[st],id[cnt]=d,hd[st]=cnt;
}
int find(ll x){
int st=x%mod;
for(int i=hd[st];i;i=nxt[i]){
if(val[i]==x) return id[i];
}
return -;
}
}ha;
void exgcd(ll a,ll b,ll &x,ll &y){
if(b==){
x=,y=;return;
}
exgcd(b,a%b,y,x);
y-=(a/b)*x;
}
ll qm(ll a,ll b,ll p){
ll ret=,base=a;
while(b){
if(b&) ret=(base*ret)%p;
base=(base*base)%p;
b>>=;
}
return ret;
}
int gcd(int a,int b){
return (b==)?a:gcd(b,a%b);
}
int BSGS(ll a,ll b,ll c){
int up=(int)floor(sqrt(1.0*c-))+;
ll ni=,yy=;
exgcd(qm(a,up,c),c,ni,yy);
ni=(ni%c+c)%c;//warning!!! 必须变成正数
ll kk=;
for(int i=;i<=up-;i++){
ha.insert(kk,i);
kk=(kk*a)%c;
}
ll bb=b;
for(int i=;i<=up;i++){
int kk=ha.find(bb);
if(kk>=) return i*up+kk;
bb=(bb*ni)%c;//不断找逆元 递推就可以
}
return -;
}
int EXBSGS(){
int num=;
int yC=C;
int yB=B;
int yA=A;
ll ji=;
int ret=-;
bool flag=false;
while(){
int g=gcd(A,C);
if(g==) break;
if(B%g) {
flag=true;break;
}
B/=g,C/=g,ji=(ji*A/g)%C;
num++;
}
for(int i=;i<=num;i++){
ll kk=qm(yA,i,yC);
if(kk%yC==yB) return i;
}
if(!flag){
ll ni,yy;
exgcd(ji,C,ni,yy);
ni=(ni%C+C)%C;//warning!!! 必须变成正数
ll NB=(B*ni)%C;
ret=BSGS(A,NB,C);
}
if(ret>=) return ret+num;
else return -;
}
int main(){
while(){
scanf("%lld%lld%lld",&A,&C,&B);
if(A==&&B==&&C==) break;
ha.init();
B%=C;
int ret=EXBSGS();
if(ret>=){
printf("%d\n",ret);
}
else{
puts("No Solution");
}
}
return ;
}

EXBSGS

我的易错点:

①BSGS和EXBSGS中,总是忘了对B或者NB取模,就爆long long 了。(日常模一模)

②C不一定是质数,所以用exgcd求逆元(欧拉定理亲测也行,只要你不嫌sqrt麻烦)

③分块求每一块大小的时候,up=floor(sqrt(C))+1注意一定要加一,否则floor就卡下去了。对于C是质数,就可能不能取到C-1

比如:73^x = 71 mod 139 (139是质数)的解是:136

如果不加1,up=11 那么,最多能分块到:121+11=132 就输出无解了。

④用exgcd求逆元的时候,必须把求出来的逆元:ni=(ni%C+C)%C转化为正数!!!

BSGS&EXBSGS 大手拉小手,大步小步走的更多相关文章

  1. 离散对数&&大步小步算法及扩展

    bsgs algorithm ax≡b(mod n) 大步小步算法,这个算法有一定的局限性,只有当gcd(a,m)=1时才可以用 原理 此处讨论n为素数的时候. ax≡b(mod n)(n为素数) 由 ...

  2. BSGS && EXBSGS

    基础BSGS 用处是什么呢w 大步小步发(Baby-Step-Giant-Step,简称BSGS),可以用来高效求解形如\(A^x≡B(mod C)\)(C为素数)的同余方程. 常用于求解离散对数问题 ...

  3. [模板]大步小步算法——BSGS算法

    大步小步算法用于解决:已知A, B, C,求X使得 A^x = B (mod C) 成立. 我们令x = im - j | m = ceil(sqrt(C)), i = [1, m], j = [0, ...

  4. 离散对数及其拓展 大步小步算法 BSGS

    离散对数及其拓展 离散对数是在群Zp∗Z_{p}^{*}Zp∗​而言的,其中ppp是素数.即在在群Zp∗Z_{p}^{*}Zp∗​内,aaa是生成元,求关于xxx的方程ax=ba^x=bax=b的解, ...

  5. JQ方法实用案例///鼠标移动到div和修改ipt中弹窗、CSS鼠标变小手、JQ获取元素属性、JQ选择器

    今天学习了jQ,jQ对js的帮助很大,菜鸟教程上也有属性.可以查看 js 和 jquery主要的区别 在 dom    想用jquery  必须先引入(顺序问题)        先css 再js:   ...

  6. 【题解】Matrix BZOJ 4128 矩阵求逆 离散对数 大步小步算法

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4128 大水题一道 使用大步小步算法,把数字的运算换成矩阵的运算就好了 矩阵求逆?这么基础的线 ...

  7. [luogu4195 Spoj3105] Mod (大步小步)

    传送门 题目描述 已知数a,p,b,求满足a^x≡b(mod p)的最小自然数x. 输入输出格式 输入格式: 每个测试文件中最多包含100组测试数据. 每组数据中,每行包含3个正整数a,p,b. 当a ...

  8. (day67)组件、组件化、组件传参、JS补充(命名转换、for in 、数据转换)、css取消选中和模拟小手

    目录 一.初识组件 (一)概念 (二)特点 二.组件的分类 (一)根组件 (二)局部组件 (三)全局组件 二.数据组件化 三.组件的传参 (一)父传子 (二)子传父 四.JS补充 (一)与html命名 ...

  9. 数据结构:堆排序 (python版) 小顶堆实现从大到小排序 | 大顶堆实现从小到大排序

    #!/usr/bin/env python # -*- coding:utf-8 -*- ''' Author: Minion-Xu 小堆序实现从大到小排序,大堆序实现从小到大排序 重点的地方:小堆序 ...

随机推荐

  1. [已解决]An unhandled exception occurred while processing the request.

    An unhandled exception occurred while processing the request. InvalidOperationException: The layout ...

  2. linux下文件加密方法总结

    为了安全考虑,通常会对一些重要文件进行加密备份或加密保存,下面对linux下的文件加密方法做一简单总结: 方法一:gzexe加密这种加密方式不是非常保险的方法,但是能够满足一般的加密用途,可以隐蔽脚本 ...

  3. Linux下DNS简单部署(主从域名服务器)

    一.DNS简介DNS(Domain Name System),域名系统,因特网上作为域名和IP地址相互映射的一个分布式数据库,能够使用户更方便的访问互联网,而不用去记住能够被机器直接读取的IP数串.通 ...

  4. java 定时器中任务的启动、停止、再启动

    package com.cvicse.ump.timer.service; import java.util.Date; import java.util.Timer; import com.cvic ...

  5. 终于做完了这个pj

    首先要说这个博客网站实在是功能太弱!不知道为什么还要每次写博客.直接交作业不好吗- -b 1.估计时间: 看见这个任务就觉得很难啊,估计装vs2012就得半天,然后上学期选修的c++基本上都忘光了,本 ...

  6. Linux内核分析作业六

    1.阅读理解task_struct数据结构 2.分析fork函数对应的内核处理过程sys_clone,理解创建一个新进程如何创建和修改task_struct数据结构: fork进程的代码 #inclu ...

  7. Linux课题实践三——程序破解

    2.3   程序破解 20135318 刘浩晨 1.     掌握NOP.JNE.JE.JMP.CMP汇编指令的机器码 NOP:NOP指令即“空指令”.执行到NOP指令时,CPU什么也不做,仅仅当做一 ...

  8. 广商博客冲刺第二天new

    队名:雷锋队 队员:叶子鹏 王佳宁 张奇聪 张振演 曾柏树 项目:广商博客(嵌入APP) 执笔人:王佳宁 第一天沖刺傳送門 第三天沖刺傳送門 今天主要是写需求分析,在经过组员的热烈地讨论,需求分析如下 ...

  9. BugPhobia进阶篇章:功能规格说明书

    0x01 :特别鸣谢 首先特别鸣谢<构建之法>中并没有给出固定化格式的功能规格说明书的样例,因此在此次的说明书中将尽可能用生动形象的例子展示软件交互阐释 因此受到它本身的启发,此次团队功能 ...

  10. Chrome查看HTTP

    查找cookie 补充: 接口调试使用postman挺不错的.以前每次都自己写一个ajax来进行接收调试. 如:用post发送json数据给接口,得到json数据. 工具有时候能让效率大大提升,要学会 ...