matlab练习程序(FAST特征点检测)
算法思想:如果一个像素与它邻域的像素差别较大(过亮或过暗) , 那它更可能是角点。
算法步骤:
1.上图所示,一个以像素p为中心,半径为3的圆上,有16个像素点(p1、p2、...、p16)。
2.定义一个阈值。计算p1、p9与中心p的像素差,若它们绝对值都小于阈值,则p点不可能是特征点,直接pass掉;否则,当做候选点,有待进一步考察;
3.若p是候选点,则计算p1、p9、p5、p13与中心p的像素差,若它们的绝对值有至少3个超过阈值,则当做候选点,再进行下一步考察;否则,直接pass掉;
4.若p是候选点,则计算p1到p16这16个点与中心p的像素差,若它们有至少9个超过阈值,则是特征点;否则,直接pass掉。
5.对图像进行非极大值抑制:计算特征点出的FAST得分值(即score值,也即s值),判断以特征点p为中心的一个邻域(如3x3或5x5)内,计算若有多个特征点,则判断每个特征点的s值(16个点与中心差值的绝对值总和),若p是邻域所有特征点中响应值最大的,则保留;否则,抑制。若邻域内只有一个特征点(角点),则保留。
代码如下:
clear all;
close all;
clc; img=imread('lena.jpg');
imshow(img) [m n]=size(img);
score=zeros(m,n); t=; %阈值
for i=:m-
for j=:n-
p=img(i,j);
%步骤1,得到以p为中心的16个邻域点
pn=[img(i-,j) img(i-,j+) img(i-,j+) img(i-,j+) img(i,j+) img(i+,j+) img(i+,j+) img(i+,j+) ...
img(i+,j) img(i+,j-) img(i+,j-) img(i+,j-) img(i,j-) img(i-,j-) img(i-,j-) img(i-,j-)]; %步骤2
if abs(pn()-p)<t && abs(pn()-p)<t
continue;
end %步骤3
p1___=[abs(pn()-p)>t abs(pn()-p)>t abs(pn()-p)>t abs(pn()-p)>t];
if sum(p1___)>=
ind=find(abs(pn-p)>t);
%步骤4
if length(ind)>=
score(i,j) = sum(abs(pn-p));
end
end
end
end %步骤5,非极大抑制,并且画出特征点
for i=:m-
for j=:n-
if score(i,j)~=
if max(max(score(i-:i+,j-:j+)))==score(i,j)
[img(i-,j), img(i-,j+), img(i-,j+), img(i-,j+), img(i,j+), img(i+,j+), img(i+,j+), img(i+,j+), ...
img(i+,j), img(i+,j-), img(i+,j-), img(i+,j-), img(i,j-), img(i-,j-), img(i-,j-), img(i-,j-)]= ...
deal(,,,,,,,,,,,,,,,);
end
end
end
end
figure;
imshow(img);
结果如下:
原图:
检测结果:
参考:https://www.cnblogs.com/wyuzl/p/7834159.html
matlab练习程序(FAST特征点检测)的更多相关文章
- FAST特征点检测&&KeyPoint类
FAST特征点检测算法由E.Rosten和T.Drummond在2006年在其论文"Machine Learning for High-speed Corner Detection" ...
- FAST特征点检测
Features From Accelerated Segment Test 1. FAST算法原理 博客中已经介绍了很多图像特征检测算子,我们可以用LoG或者DoG检测图像中的Blobs(斑点检测) ...
- FAST特征点检测算法
一 原始方法 简介 在局部特征点检测快速发展的时候,人们对于特征的认识也越来越深入,近几年来许多学者提出了许许多多的特征检测算法及其改进算法,在众多的特征提取算法中,不乏涌现出佼佼者. 从最早期的Mo ...
- FAST特征点检测features2D
#include <opencv2/core/core.hpp> #include <opencv2/features2d/features2d.hpp> #include & ...
- OPENCV图像特征点检测与FAST检测算法
前面描述角点检测的时候说到,角点其实也是一种图像特征点,对于一张图像来说,特征点分为三种形式包括边缘,焦点和斑点,在OPENCV中,加上角点检测,总共提供了以下的图像特征点检测方法 FAST SURF ...
- OpenCV特征点提取----Fast特征
1.FAST(featuresfrom accelerated segment test)算法 http://blog.csdn.net/yang_xian521/article/details/74 ...
- 第十四节、FAST角点检测(附源码)
在前面我们已经陆续介绍了许多特征检测算子,我们可以根据图像局部的自相关函数求得Harris角点,后面又提到了两种十分优秀的特征点以及他们的描述方法SIFT特征和SURF特征.SURF特征是为了提高运算 ...
- ORB特征点检测
Oriented FAST and Rotated BRIEF www.cnblogs.com/ronny 这篇文章我们将介绍一种新的具有局部不变性的特征 -- ORB特征,从它的名字中可以看出它 ...
- [转]ORB特征提取-----FAST角点检测
转载地址:https://blog.csdn.net/maweifei/article/details/62887831 (一)ORB特征点提取算法的简介 Oriented FAST and Rota ...
随机推荐
- Maven - 实例-4-依赖传递
这里以Eclipse创建Maven工程来演示. Setp-1 创建Maven项目 File ---> New ---> Maven Project ---> 默认勾选"Us ...
- 十大经典排序算法+sort排序
本文转自:十大经典排序算法,其中有动图+代码详解,本文简单介绍+个人理解. 排序算法 经典的算法问题,也是面试过程中经常被问到的问题.排序算法简单分类如下: 这些排序算法的时间复杂度等参数如下: 其中 ...
- 函数isNaN() parseFloat() parseInt() Math对象
isNaN() 定义和用法 isNaN() 函数用于检查其参数是否是非数字值. isNaN(x) x 是特殊的非数字值 NaN(或者能被转换为这样的值) console.log(isNaN(NaN)) ...
- Docker总结(脑图图片)
- CountDownLatch 和 CyclicBarrier 的基本使用
CountDownLatch 和 CyclicBarrier 是并发编程中常用的辅助类,两者使用上有点类似,但又有不同. 一.CountDownLatch CountDownLatch 可是实现类似计 ...
- mysql 开发进阶篇系列 35 工具篇 mysqldump(数据导出工具)
一.概述 mysqldump客户端工具是用来备份数据库或在不同数据库之间进行数据迁移.备份内容包含创建表或装载表的sql语句.mysqldump目前是mysql中最常用的备份工具. 三种方式来调用my ...
- winhex十六进制常用快捷键
Winhex的常用快捷键 摘要: Winhex 是一个专门用来对付各种日常紧急情况的工具.它可以用来检查和修复各种文件.恢复删除文件.硬盘损坏造成的数据丢失等.同时它还可以让你看到其他程序隐藏起来的文 ...
- Quartz.NET的简单任务管理类
昨天使用Quartz.NET做了个定时任务的功能,并实现了多个定时任务的功能 下面这个类实现了如下功能: 1.对定时任务进行管理 2.创建定时任务,需要给定时任务一个job的名称 3.判断给定的job ...
- 在Android项目中使用AspectJ
版权声明:本文为博主原创文章,未经博主允许不得转载. 转载请表明出处:http://www.cnblogs.com/cavalier-/p/8888459.html 什么是AOP AOP是 Aspec ...
- 用pip安装python库下载timeout的解决办法
我们直接用命令:pip install 库名,因网络太慢,导致下载超时~~~ 针对在安装Python库出现的超时问题---总结了如下两种解决方案: 其一:pip --default-timeout=1 ...