matlab练习程序(FAST特征点检测)
算法思想:如果一个像素与它邻域的像素差别较大(过亮或过暗) , 那它更可能是角点。
算法步骤:
1.上图所示,一个以像素p为中心,半径为3的圆上,有16个像素点(p1、p2、...、p16)。
2.定义一个阈值。计算p1、p9与中心p的像素差,若它们绝对值都小于阈值,则p点不可能是特征点,直接pass掉;否则,当做候选点,有待进一步考察;
3.若p是候选点,则计算p1、p9、p5、p13与中心p的像素差,若它们的绝对值有至少3个超过阈值,则当做候选点,再进行下一步考察;否则,直接pass掉;
4.若p是候选点,则计算p1到p16这16个点与中心p的像素差,若它们有至少9个超过阈值,则是特征点;否则,直接pass掉。
5.对图像进行非极大值抑制:计算特征点出的FAST得分值(即score值,也即s值),判断以特征点p为中心的一个邻域(如3x3或5x5)内,计算若有多个特征点,则判断每个特征点的s值(16个点与中心差值的绝对值总和),若p是邻域所有特征点中响应值最大的,则保留;否则,抑制。若邻域内只有一个特征点(角点),则保留。
代码如下:
clear all;
close all;
clc; img=imread('lena.jpg');
imshow(img) [m n]=size(img);
score=zeros(m,n); t=; %阈值
for i=:m-
for j=:n-
p=img(i,j);
%步骤1,得到以p为中心的16个邻域点
pn=[img(i-,j) img(i-,j+) img(i-,j+) img(i-,j+) img(i,j+) img(i+,j+) img(i+,j+) img(i+,j+) ...
img(i+,j) img(i+,j-) img(i+,j-) img(i+,j-) img(i,j-) img(i-,j-) img(i-,j-) img(i-,j-)]; %步骤2
if abs(pn()-p)<t && abs(pn()-p)<t
continue;
end %步骤3
p1___=[abs(pn()-p)>t abs(pn()-p)>t abs(pn()-p)>t abs(pn()-p)>t];
if sum(p1___)>=
ind=find(abs(pn-p)>t);
%步骤4
if length(ind)>=
score(i,j) = sum(abs(pn-p));
end
end
end
end %步骤5,非极大抑制,并且画出特征点
for i=:m-
for j=:n-
if score(i,j)~=
if max(max(score(i-:i+,j-:j+)))==score(i,j)
[img(i-,j), img(i-,j+), img(i-,j+), img(i-,j+), img(i,j+), img(i+,j+), img(i+,j+), img(i+,j+), ...
img(i+,j), img(i+,j-), img(i+,j-), img(i+,j-), img(i,j-), img(i-,j-), img(i-,j-), img(i-,j-)]= ...
deal(,,,,,,,,,,,,,,,);
end
end
end
end
figure;
imshow(img);
结果如下:
原图:
检测结果:
参考:https://www.cnblogs.com/wyuzl/p/7834159.html
matlab练习程序(FAST特征点检测)的更多相关文章
- FAST特征点检测&&KeyPoint类
FAST特征点检测算法由E.Rosten和T.Drummond在2006年在其论文"Machine Learning for High-speed Corner Detection" ...
- FAST特征点检测
Features From Accelerated Segment Test 1. FAST算法原理 博客中已经介绍了很多图像特征检测算子,我们可以用LoG或者DoG检测图像中的Blobs(斑点检测) ...
- FAST特征点检测算法
一 原始方法 简介 在局部特征点检测快速发展的时候,人们对于特征的认识也越来越深入,近几年来许多学者提出了许许多多的特征检测算法及其改进算法,在众多的特征提取算法中,不乏涌现出佼佼者. 从最早期的Mo ...
- FAST特征点检测features2D
#include <opencv2/core/core.hpp> #include <opencv2/features2d/features2d.hpp> #include & ...
- OPENCV图像特征点检测与FAST检测算法
前面描述角点检测的时候说到,角点其实也是一种图像特征点,对于一张图像来说,特征点分为三种形式包括边缘,焦点和斑点,在OPENCV中,加上角点检测,总共提供了以下的图像特征点检测方法 FAST SURF ...
- OpenCV特征点提取----Fast特征
1.FAST(featuresfrom accelerated segment test)算法 http://blog.csdn.net/yang_xian521/article/details/74 ...
- 第十四节、FAST角点检测(附源码)
在前面我们已经陆续介绍了许多特征检测算子,我们可以根据图像局部的自相关函数求得Harris角点,后面又提到了两种十分优秀的特征点以及他们的描述方法SIFT特征和SURF特征.SURF特征是为了提高运算 ...
- ORB特征点检测
Oriented FAST and Rotated BRIEF www.cnblogs.com/ronny 这篇文章我们将介绍一种新的具有局部不变性的特征 -- ORB特征,从它的名字中可以看出它 ...
- [转]ORB特征提取-----FAST角点检测
转载地址:https://blog.csdn.net/maweifei/article/details/62887831 (一)ORB特征点提取算法的简介 Oriented FAST and Rota ...
随机推荐
- LeetCode:149_Max Points on a line | 寻找一条直线上最多点的数量 | Hard
题目:Max Points on a line Given n points on a 2D plane, find the maximum number of points that lie on ...
- Jenkins和gitlab集成自动构建
Jenkins安装插件 Jenkins上需要安装如下插件 Gitlab Hook Plugin,GitLab Plugin Job配置 在需要自动触发的Job中 选择Build Triggers进行如 ...
- Django项目中使用celery做异步任务
异步任务介绍 在写项目过程中经常会遇到一些耗时的任务, 比如:发送邮件.发送短信等等~.这些操作如果都同步执行耗时长对用户体验不友好,在这种情况下就可以把任务放在后台异步执行 celery就是用于处理 ...
- jsp-静态包含和动态包含的区别
include指令是静态包含.静态包含的意思就是:把文件的代码内容都包含进来,再编译! include指令是静态包含,include行为是动态包含.其实include行为就是封装了request.ge ...
- [EXP]Drupal < 8.5.11 / < 8.6.10 - RESTful Web Services unserialize() Remote Command Execution (Metasploit)
## # This module requires Metasploit: https://metasploit.com/download # Current source: https://gith ...
- 使用JDBC连接各种数据库
项目需要连多钟数据库,把链接的关键部分在这里记录下来. 1.Oracle8/8i/9i数据库(thin模式) Class.forName("oracle.jdbc.driver.Oracle ...
- Django--Auth 模块
1 Auth模块是什么 Auth模块是Django自带的用户认证模块: 我们在开发一个网站的时候,无可避免的需要设计实现网站的用户系统.此时我们需要实现包括用户注册.用户登录.用户认证.注销.修改密码 ...
- 从零开始学 Web 之 CSS(五)可见性、内容移除、精灵图、属性选择器、滑动门
大家好,这里是「 Daotin的梦呓 」从零开始学 Web 系列教程.此文首发于「 Daotin的梦呓 」公众号,欢迎大家订阅关注.在这里我会从 Web 前端零基础开始,一步步学习 Web 相关的知识 ...
- SQL 必知必会·笔记<4>使用通配符过滤数据
LIKE操作符 通配符(wildcard): 用来匹配值的一部分的特殊字符. 百分号(%)通配符 最常使用的通配符是百分号(%).在搜索串中,%表示任何字符出现任意次数: SELECT prod_id ...
- 第4章 Selenium2-java WebDriver API (三)
4.12 上传文件 4.12.1 sendKeys实现上传 html <html> <head> </head> <body> <div ...