python 使用进程池Pool进行并发编程
进程池Pool
当需要创建的子进程数量不多时,可以直接利用multiprocessing中的Process动态成生多个进程,但如果是上百甚至上千个目标,手动的去创建进程的工作量巨大,此时就可以用到multiprocessing模块提供的Pool方法。
初始化Pool时,可以指定一个最大进程数,当有新的请求提交到Pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到指定的最大值,那么该请求就会等待,直到池中有进程结束,才会用之前的进程来执行新的任务,请看下面的实例:
# -*- coding:utf-8 -*-
from multiprocessing import Pool
import os, time, random def worker(msg):
t_start = time.time()
print("%s开始执行,进程号为%d" % (msg,os.getpid()))
# random.random()随机生成0~1之间的浮点数
time.sleep(random.random()*2)
t_stop = time.time()
print(msg,"执行完毕,耗时%0.2f" % (t_stop-t_start)) po=Pool(3) #定义一个进程池,最大进程数3
for i in range(0,10):
#Pool().apply_async(要调用的目标,(传递给目标的参数元祖,))
#每次循环将会用空闲出来的子进程去调用目标
po.apply_async(worker,(i,)) print("----start----")
po.close() #关闭进程池,关闭后po不再接收新的请求
po.join() #等待po中所有子进程执行完成,必须放在close语句之后
print("-----end-----")
ultiprocessing.Pool常用函数解析:
- apply_async(func[, args[, kwds]]) :使用非阻塞方式调用func(并行执行,堵塞方式必须等待上一个进程退出才能执行下一个进程),args为传递给func的参数列表,kwds为传递给func的关键字参数列表;
- close():关闭Pool,使其不再接受新的任务;
- terminate():不管任务是否完成,立即终止;
- join():主进程阻塞,等待子进程的退出, 必须在close或terminate之后使用;
进程池中的Queue
如果要使用Pool创建进程,就需要使用multiprocessing.Manager()中的Queue(),而不是multiprocessing.Queue(),否则会得到一条如下的错误信息:
RuntimeError: Queue objects should only be shared between processes through inheritance.
下面的实例演示了进程池中的进程如何通信:
# -*- coding:utf-8 -*- # 修改import中的Queue为Manager
from multiprocessing import Manager,Pool
import os,time,random def reader(q):
print("reader启动(%s),父进程为(%s)" % (os.getpid(), os.getppid()))
for i in range(q.qsize()):
print("reader从Queue获取到消息:%s" % q.get(True)) def writer(q):
print("writer启动(%s),父进程为(%s)" % (os.getpid(), os.getppid()))
for i in "itcast":
q.put(i) if __name__=="__main__":
print("(%s) start" % os.getpid())
q = Manager().Queue() # 使用Manager中的Queue
po = Pool()
# 使用阻塞模式创建进程,这样就不需要在reader中使用死循环了,可以让writer完全执行完成后,再用reader去读取
po.apply_async(writer, (q,)) time.sleep(1) # 先让上面的任务向Queue存入数据,然后再让下面的任务开始从中取数据 po.apply_async(reader, (q,))
po.close()
po.join()
print("(%s) End" % os.getpid())
python 使用进程池Pool进行并发编程的更多相关文章
- [转]Python多进程并发操作中进程池Pool的应用
Pool类 在使用Python进行系统管理时,特别是同时操作多个文件目录或者远程控制多台主机,并行操作可以节约大量的时间.如果操作的对象数目不大时,还可以直接使用Process类动态的生成多个进程,十 ...
- Python多进程并发操作中进程池Pool的应用
Pool类 在使用Python进行系统管理时,特别是同时操作多个文件目录或者远程控制多台主机,并行操作可以节约大量的时间.如果操作的对象数目不大时,还可以直接使用Process类动态的生成多个进程,十 ...
- Python 之并发编程之manager与进程池pool
一.manager 常用的数据类型:dict list 能够实现进程之间的数据共享 进程之间如果同时修改一个数据,会导致数据冲突,因为并发的特征,导致数据更新不同步. def work(dic, lo ...
- python 全栈开发,Day40(进程间通信(队列和管道),进程间的数据共享Manager,进程池Pool)
昨日内容回顾 进程 multiprocess Process —— 进程 在python中创建一个进程的模块 start daemon 守护进程 join 等待子进程执行结束 锁 Lock acqui ...
- python全栈开发,Day40(进程间通信(队列和管道),进程间的数据共享Manager,进程池Pool)
昨日内容回顾 进程 multiprocess Process —— 进程 在python中创建一个进程的模块 start daemon 守护进程 join 等待子进程执行结束 锁 Lock acqui ...
- Python多进程库multiprocessing创建进程以及进程池Pool类的使用
问题起因最近要将一个文本分割成好几个topic,每个topic设计一个regressor,各regressor是相互独立的,最后汇总所有topic的regressor得到总得预测结果.没错!类似bag ...
- python 进程池pool简单使用
平常会经常用到多进程,可以用进程池pool来进行自动控制进程,下面介绍一下pool的简单使用. 需要主动是,在Windows上要想使用进程模块,就必须把有关进程的代码写if __name__ == ‘ ...
- Python多进程库multiprocessing中进程池Pool类的使用[转]
from:http://blog.csdn.net/jinping_shi/article/details/52433867 Python多进程库multiprocessing中进程池Pool类的使用 ...
- python学习笔记——multiprocessing 多进程组件 进程池Pool
1 进程池Pool基本概述 在使用Python进行系统管理时,特别是同时操作多个文件目录或者远程控制多台主机,并行操作可以节约大量时间,如果操作的对象数目不大时,还可以直接适用Process类动态生成 ...
随机推荐
- Linux命令:pwd
打印当前目录的完全路径. -L 打印路径包含符合路径 -P 打印路径不含符合路径. -LP,可能打印的不同,取决于你对进入当前目录的方式是通过符号链接进入,还是物理目录进入.如果是符号链接进入,则-L ...
- rest_framework常用设置
1.常用配置 import django_filters from django.db.models import Q from rest_framework.pagination import Pa ...
- HTML 元素大小
1.元素的偏移量 元素的可见大小是由其高度.宽度决定,包括所有的内边距.滚动条和边框大小(不包括外边距). offsetHeight :元素在垂直方向上占用的空间大小,以像素计算.包括元素的高度,水平 ...
- vm ware虚拟机ping不通解决办法
本人是linux菜鸟,在使用vm ware的时候,在多台电脑上安装了多个虚拟机,这多台电脑是同一网段的,并且能够互相ping通,但是vm ware下的虚拟机就无法ping通 通过自己的各种才是,发现在 ...
- 集群环境下定时调度的解决方案之Quartz集群
集群环境可能出现的问题 在上一篇博客我们介绍了如何在自己的项目中从无到有的添加了Quartz定时调度引擎,其实就是一个Quartz 和Spring的整合过程,很容易实现,但是我们现在企业中项目通常都是 ...
- 查询Oracle 临时表空间使用情况[z]
[z]http://blog.itpub.net/28697282/viewspace-1441321/ SELECT d.tablespace_name “Name”, TO_CHAR(NVL(a. ...
- c++ stl源码剖析学习笔记(一)uninitialized_copy()函数
template <class InputIterator, class ForwardIterator>inline ForwardIterator uninitialized_copy ...
- ABP 异常处理 第四篇
1.ABP异常处理机制是通过过滤器实现的,我们查看的webAPI的异常处理,我们来看看他的源码,AbpApiExceptionFilterAttribute 继承ExceptionFilterAttr ...
- Springboot+Mybatis 显示sql语句
在application.properties里添加 logging.level.com.xxx.service=debug com.xxx.service为包路径,一般可以将service层全加上 ...
- Python Day 14 迭代器、for循环原理、枚举、生成器
阅读内容 内容回顾 带参装饰器和wraps用法 迭代器知识引入 可迭代对象 迭代器对象 for循环迭代器 枚举对象 生成器 ##内容回顾 函数的嵌套定义:在函数内部定义另一 ...