长为$A$,宽为$B$的矩阵放$K$个车的方案数$=C(A,K)\times C(B,K)\times K!$。

建立笛卡尔树,那么左右儿子独立,设$f[i][j]$表示$i$子树内放$j$个车的方案数。

合并左右儿子之后,枚举在底部矩形放几个车进行转移即可。

时间复杂度$O(n^3)$。

#include<cstdio>
const int N=505,M=1000005,P=1000000007;
int n,m,i,a[N],mx,fac[M],inv[M],g[N],f[N][N];
inline int cal(int a,int b,int k){
if(a<k||b<k)return 0;
return 1LL*fac[a]*inv[a-k]%P*inv[k]%P*fac[b]%P*inv[b-k]%P;
}
int dp(int l,int r,int h){
if(l>r)return 0;
int i,j,x=l;
for(i=l;i<=r;i++)if(a[i]<a[x])x=i;
int u=dp(l,x-1,a[x]),v=dp(x+1,r,a[x]);
for(i=0;i<=r-l;i++)g[i]=0;
for(i=0;i<=x-l;i++)if(f[u][i])for(j=0;j<=r-x;j++)g[i+j]=(1LL*f[u][i]*f[v][j]+g[i+j])%P;
for(i=0;i<=r-l+1;i++)for(f[x][i]=j=0;j<=r-l&&j<=i;j++)f[x][i]=(1LL*g[j]*cal(r-l+1-j,a[x]-h,i-j)+f[x][i])%P;
return x;
}
int main(){
scanf("%d%d",&n,&m);
for(mx=n,i=1;i<=n;i++)scanf("%d",&a[i]),mx=a[i]>mx?a[i]:mx;
for(fac[0]=i=1;i<=mx;i++)fac[i]=1LL*fac[i-1]*i%P;
for(inv[0]=inv[1]=1,i=2;i<=mx;i++)inv[i]=1LL*P/i*(P-inv[P%i])%P;
for(i=2;i<=mx;i++)inv[i]=1LL*inv[i-1]*inv[i]%P;
return printf("%d",f[dp(f[0][0]=1,n,0)][m]),0;
}

  

BZOJ2616 : SPOJ PERIODNI的更多相关文章

  1. [BZOJ2616]SPOJ PERIODNI 树形dp+组合数+逆元

    2616: SPOJ PERIODNI Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 128  Solved: 48[Submit][Status][ ...

  2. BZOJ2616 SPOJ PERIODNI(笛卡尔树+树形dp)

    考虑建一棵小根堆笛卡尔树,即每次在当前区间中找到最小值,以最小值为界分割区间,由当前最小值所在位置向两边区间最小值所在位置连边,递归建树.那么该笛卡尔树中的一棵子树对应序列的一个连续区间,且根的权值是 ...

  3. bzoj2616: SPOJ PERIODNI——笛卡尔树+DP

    不连续的处理很麻烦 导致序列DP又找不到优秀的子问题 自底向上考虑? 建立小根堆笛卡尔树 每个点的意义是:高度是(自己-father)的横着的极大矩形 子问题具有递归的优秀性质 f[i][j]i为根子 ...

  4. BZOJ2616 SPOJ PERIODNI(笛卡尔树 + DP)

    题意 N,K≤500,h[i]≤106N,K\le 500,h[i]\le10^6N,K≤500,h[i]≤106 题解 建立出小根堆性质的笛卡尔树,于是每个节点可以代表一个矩形,其宽度为子树大小,高 ...

  5. 【BZOJ2616】SPOJ PERIODNI 笛卡尔树+树形DP

    [BZOJ2616]SPOJ PERIODNI Description Input 第1行包括两个正整数N,K,表示了棋盘的列数和放的车数. 第2行包含N个正整数,表示了棋盘每列的高度. Output ...

  6. BZOJ.2616.SPOJ PERIODNI(笛卡尔树 树形DP)

    BZOJ SPOJ 直观的想法是构建笛卡尔树(每次取最小值位置划分到两边),在树上DP,这样两个儿子的子树是互不影响的. 令\(f[i][j]\)表示第\(i\)个节点,放了\(j\)个车的方案数. ...

  7. spoj periodni

    题解: dp 方程弄出来就好做了 代码: #include<bits/stdc++.h> ,M=; typedef int arr[N]; typedef long long ll; in ...

  8. bzoj 2616 SPOJ PERIODNI——笛卡尔树+树形DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2616 把相同高度的连续一段合成一个位置(可能不需要?),用前缀和维护宽度. 然后每次找区间里 ...

  9. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

随机推荐

  1. windows10的文件浏览器中无法搜索文件内容

    系统:更新到最新的win10(2018年8月23日 23:54:31) 重现步骤:git clone一个项目,然后切换到它的另一个分支:打开文件夹浏览器(explorer),在右上角里输入想要查找的字 ...

  2. 通过安装memadmin对memcache进行可视化管理

    https://blog.csdn.net/reblue520/article/details/70792891

  3. sed 详解【转】

    原文地址:http://www.cnblogs.com/sparkdev/archive/2017/07/10/7138073.html 基本命令格式 sed [常用选项] 命令文本 输入 常用选项 ...

  4. .NET轻量级任务管理类

    概述 最近做项目总是遇到服务跑批等需求,一直想写个任务管理的DLL,现在整理了一下思路,编写了一个DLL类库,使用方便.只要调用的子类继承服务基类便可以实现任务的整体调度.先看看页面效果: 使用方式 ...

  5. bzoj2870

    题解: 边分治入门题 当然并查集+维护直径更加简单 就是两棵树二合一直径是两颗树上的4个直径两两组合的最大值 查询路径长度你搞个差分查个lca就好了 点分治并不能做这题 分成多个联通块就gg了(点分治 ...

  6. 【原创】java socket 和.net socket 通讯 demo

    结束符协议"##" import java.io.BufferedReader; import java.io.IOException; import java.io.InputS ...

  7. python 类、函数的引用

    类的引用 一.同级目录引用: from 文件名 import 类名     如果报错,原因基本上就是:pycharm不会将当前文件目录自动加入自己的sourse_path.     解决方法:     ...

  8. app奔溃经验和应对方式

    bug直接影响:用户体验.app商店评级.用户忠诚度 前言: 因为现在市场是andriod手机的碎片化.造成了andriod手机更加容易出现APP的崩溃,通常在网络异常时APP上还在进行数据交互,即会 ...

  9. 20165220 实验三 敏捷开发与XP实践 实验报告

    实验三 敏捷开发与XP实践-1 实验要求: 实验三 敏捷开发与XP实践 http://www.cnblogs.com/rocedu/p/4795776.html, Eclipse的内容替换成IDEA ...

  10. Sublime Text3搭建PHP开发环境

    Sublime Text3搭建PHP开发环境 本文主要给大家分享了关于Sublime Text3搭建PHP开发环境 ,感兴趣的小伙伴可以做一下参考 一.Sublime text3安装 到官网http: ...