显然容斥后转化为求树链的交。这个题非常良心的保证了查询的路径都是到祖先的,求交就很休闲了。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 200010
#define ui unsigned int
#define inf ((ui)4294967295)
#define p31 2147483647
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,p[N],fa[N],deep[N],son[N],size[N],top[N],dfn[N],L[N<<],R[N<<],u[],v[],flag[],k,cnt,t;
ui tree[N<<],lazy[N<<],ans;
struct data{int to,nxt;
}edge[N<<];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
void dfs1(int k)
{
size[k]=;
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=fa[k])
{
fa[edge[i].to]=k;
deep[edge[i].to]=deep[k]+;
dfs1(edge[i].to);
size[k]+=size[edge[i].to];
if (size[edge[i].to]>size[son[k]]) son[k]=edge[i].to;
}
}
void dfs2(int k,int from)
{
dfn[k]=++cnt;top[k]=from;
if (son[k]) dfs2(son[k],from);
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=fa[k]&&edge[i].to!=son[k]) dfs2(edge[i].to,edge[i].to);
}
void build(int k,int l,int r)
{
L[k]=l,R[k]=r;
if (l==r) return;
int mid=l+r>>;
build(k<<,l,mid);
build(k<<|,mid+,r);
}
void up(int k){tree[k]=tree[k<<]+tree[k<<|];}
void update(int k,ui x){tree[k]+=(R[k]-L[k]+)*x,lazy[k]+=x;}
void down(int k){update(k<<,lazy[k]),update(k<<|,lazy[k]),lazy[k]=;}
void add(int k,int l,int r,ui x)
{
if (L[k]==l&&R[k]==r){update(k,x);return;}
if (lazy[k]) down(k);
int mid=L[k]+R[k]>>;
if (r<=mid) add(k<<,l,r,x);
else if (l>mid) add(k<<|,l,r,x);
else add(k<<,l,mid,x),add(k<<|,mid+,r,x);
up(k);
}
ui query(int k,int l,int r)
{
if (L[k]==l&&R[k]==r) return tree[k];
if (lazy[k]) down(k);
int mid=L[k]+R[k]>>;
if (r<=mid) return query(k<<,l,r);
else if (l>mid) return query(k<<|,l,r);
else return query(k<<,l,mid)+query(k<<|,mid+,r);
}
ui sum(int x,int y)
{
ui ans=;
while (top[x]!=top[y])
{
if (deep[top[x]]<deep[top[y]]) swap(x,y);
ans+=query(,dfn[top[x]],dfn[x]);
x=fa[top[x]];
}
if (deep[x]<deep[y]) swap(x,y);
ans+=query(,dfn[y],dfn[x]);
return ans;
}
int lca(int x,int y)
{
while (top[x]!=top[y])
{
if (deep[top[x]]<deep[top[y]]) swap(x,y);
x=fa[top[x]];
}
if (deep[x]<deep[y]) swap(x,y);
return y;
}
bool in(int x,int y){return dfn[x]<=dfn[y]&&dfn[x]+size[x]->=dfn[y];}
void calc(int op)
{
int x=,y=;
for (int i=;i<=k;i++)
if (flag[i])
{
if (!x) x=u[i],y=v[i];
else
{
int p=u[i],q=v[i];
if (deep[x]>deep[p]) swap(x,p),swap(y,q);
if (in(x,p)&&in(p,y)) x=p,y=lca(y,q);
else return;
}
}
if (x==) return;
else if (op>) ans+=sum(x,y);
else ans+=inf-sum(x,y)+;
}
void dfs(int cur,int op)
{
if (cur>k) {calc(op);return;}
flag[cur]=;dfs(cur+,-op);
flag[cur]=;dfs(cur+,op);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3589.in","r",stdin);
freopen("bzoj3589.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<n;i++)
{
int x=read(),y=read();
addedge(x,y),addedge(y,x);
}
dfs1();
dfs2(,);
build(,,n);
int m=read();
while (m--)
{
int op=read();
if (op==)
{
int x=read(),y=read();
add(,dfn[x],dfn[x]+size[x]-,y);
}
if (op==)
{
k=read();ans=;
for (int i=;i<=k;i++) u[i]=read(),v[i]=read();
for (int i=;i<=k;i++) if (dfn[u[i]]>dfn[v[i]]) swap(u[i],v[i]);
dfs(,-);printf("%u\n",ans&p31);
}
}
return ;
}

BZOJ3589 动态树(树链剖分+容斥原理)的更多相关文章

  1. 线段树&数链剖分

    傻逼线段树,傻逼数剖 线段树 定义: 线段树是一种二叉搜索树,与区间树相似,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点. 使用线段树可以快速的查找某一个节点在若干条线段中出现 ...

  2. [LOJ3014][JOI 2019 Final]独特的城市——树的直径+长链剖分

    题目链接: [JOI 2019 Final]独特的城市 对于每个点,它的答案最大就是与它距离最远的点的距离. 而如果与它距离为$x$的点有大于等于两个,那么与它距离小于等于$x$的点都不会被计入答案. ...

  3. UOJ#30/Codeforces 487E Tourists 点双连通分量,Tarjan,圆方树,树链剖分,线段树

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ30.html 题目传送门 - UOJ#30 题意 uoj写的很简洁.清晰,这里就不抄一遍了. 题解 首先建 ...

  4. BZOJ1758[Wc2010]重建计划——分数规划+长链剖分+线段树+二分答案+树形DP

    题目描述 输入 第一行包含一个正整数N,表示X国的城市个数. 第二行包含两个正整数L和U,表示政策要求的第一期重建方案中修建道路数的上下限 接下来的N-1行描述重建小组的原有方案,每行三个正整数Ai, ...

  5. CF487E Tourists 圆方树、树链剖分

    传送门 注意到我们需要求的是两点之间所有简单路径中最小值的最小值,那么对于一个点双联通分量来说,如果要经过它,则一定会经过这个点双联通分量里权值最小的点 注意:这里不能缩边双联通分量,样例\(2\)就 ...

  6. 2019.01.08 codeforces 1009F. Dominant Indices(长链剖分)

    传送门 长链剖分模板题. 题意:给出一棵树,设fi,jf_{i,j}fi,j​表示iii的子树中距离点iii距离为jjj的点的个数,现在对于每个点iii要求出使得fif_ifi​取得最大值的那个jjj ...

  7. 【LOJ】#3014. 「JOI 2019 Final」独特的城市(长链剖分)

    LOJ#3014. 「JOI 2019 Final」独特的城市(长链剖分) 显然我们画一条直径,容易发现被统计的只可能是直径某个距离较远的端点到这个点的路径上的值 用一个栈统计可以被统计的点,然后我们 ...

  8. BZOJ 1758 / Luogu P4292 [WC2010]重建计划 (分数规划(二分/迭代) + 长链剖分/点分治)

    题意 自己看. 分析 求这个平均值的最大值就是分数规划,二分一下就变成了求一条长度在[L,R]内路径的权值和最大.有淀粉质的做法但是我没写,感觉常数会很大.这道题可以用长链剖分做. 先对树长链剖分. ...

  9. 【BZOJ-3589】动态树 树链剖分 + 线段树 + 线段覆盖(特殊的技巧)

    3589: 动态树 Time Limit: 30 Sec  Memory Limit: 1024 MBSubmit: 405  Solved: 137[Submit][Status][Discuss] ...

随机推荐

  1. mysql导出CSV格式的文件

    select  *  from  Account  into outfile "/tmp/haha.csv" fields terminated by ',' lines term ...

  2. ng-include文件实现ng-repeat

    Angularjs实现自由度很高.比如ng-repeat可以以包含的文件中实现数据循环. 如: 当我们把这html文件被ng-include包含时,它完全能正常呈现对应的数据: 创建应用app: 创建 ...

  3. (原创)odoo11配置邮件功能的那些事儿

    要点总结: 1.odoo的邮件系统功能设计目的,主要是解决业务相关的邮件沟通问题,切记不要将odoo当作邮件系统或者邮件客户端使用 2.odoo收件,默认需要邮件系统支持catch-all功能,但可惜 ...

  4. [Oracle]In-Memory的Join Group 位于内存的何处?

    In-Memory的Join Group 的数据字典位于内存的何处? 有客户问到,使用Oracle 的In-Memory功能时,如果用到了 Join Group,那么这些这些Join Group,位于 ...

  5. 扩展ASP.NET Identity使用Int做主键

    当我们默认新建一个ASP.NET MVC项目的时候,使用的身份认证系统是ASP.NET Identity.但是这里的Identity使用的主键为String类型的GUID.当然这是大多数系统首先类型. ...

  6. 【精】【入门篇】js正则表达式

    前言 最近有了点时间,就回头看了一下<学习正则表达式>这本书.怎么说呢,这本书适合从零开始学习正则表达式或者有一点基础但是想要加强这方面能力的读者.这本书的风格是“实践出真知”,使用归纳方 ...

  7. Rancher + k8s + docker 部署资料

    一.k8s 文档: https://jimmysong.io/kubernetes-handbook/concepts/deployment.html 命令行大全 https://kubernetes ...

  8. react-创建react元素

    前言 react 元素,即JSX语法. const Nav, Profile; // 输入(JSX): const app = <Nav color="blue">&l ...

  9. 【2016.3.16】作业 VS2015安装&单元测试(1)

    首先说下本机配置. CPU:Intel Atom x5-z8300 @1.44GHz 内存:2GB 操作系统:Windows10 家庭版 32位 硬盘:32GB 然后开始怒装visual studio ...

  10. 11.14 Daily Scrum

    实现推荐菜谱时遇到问题,这个功能要和数据库和服务器有关,所以暂时放在一边,可能在beta版本实现. 部分成员已经完成基本任务,进行完善.   Today's Task Tomorrow's Task ...