显然容斥后转化为求树链的交。这个题非常良心的保证了查询的路径都是到祖先的,求交就很休闲了。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 200010
#define ui unsigned int
#define inf ((ui)4294967295)
#define p31 2147483647
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,p[N],fa[N],deep[N],son[N],size[N],top[N],dfn[N],L[N<<],R[N<<],u[],v[],flag[],k,cnt,t;
ui tree[N<<],lazy[N<<],ans;
struct data{int to,nxt;
}edge[N<<];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
void dfs1(int k)
{
size[k]=;
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=fa[k])
{
fa[edge[i].to]=k;
deep[edge[i].to]=deep[k]+;
dfs1(edge[i].to);
size[k]+=size[edge[i].to];
if (size[edge[i].to]>size[son[k]]) son[k]=edge[i].to;
}
}
void dfs2(int k,int from)
{
dfn[k]=++cnt;top[k]=from;
if (son[k]) dfs2(son[k],from);
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=fa[k]&&edge[i].to!=son[k]) dfs2(edge[i].to,edge[i].to);
}
void build(int k,int l,int r)
{
L[k]=l,R[k]=r;
if (l==r) return;
int mid=l+r>>;
build(k<<,l,mid);
build(k<<|,mid+,r);
}
void up(int k){tree[k]=tree[k<<]+tree[k<<|];}
void update(int k,ui x){tree[k]+=(R[k]-L[k]+)*x,lazy[k]+=x;}
void down(int k){update(k<<,lazy[k]),update(k<<|,lazy[k]),lazy[k]=;}
void add(int k,int l,int r,ui x)
{
if (L[k]==l&&R[k]==r){update(k,x);return;}
if (lazy[k]) down(k);
int mid=L[k]+R[k]>>;
if (r<=mid) add(k<<,l,r,x);
else if (l>mid) add(k<<|,l,r,x);
else add(k<<,l,mid,x),add(k<<|,mid+,r,x);
up(k);
}
ui query(int k,int l,int r)
{
if (L[k]==l&&R[k]==r) return tree[k];
if (lazy[k]) down(k);
int mid=L[k]+R[k]>>;
if (r<=mid) return query(k<<,l,r);
else if (l>mid) return query(k<<|,l,r);
else return query(k<<,l,mid)+query(k<<|,mid+,r);
}
ui sum(int x,int y)
{
ui ans=;
while (top[x]!=top[y])
{
if (deep[top[x]]<deep[top[y]]) swap(x,y);
ans+=query(,dfn[top[x]],dfn[x]);
x=fa[top[x]];
}
if (deep[x]<deep[y]) swap(x,y);
ans+=query(,dfn[y],dfn[x]);
return ans;
}
int lca(int x,int y)
{
while (top[x]!=top[y])
{
if (deep[top[x]]<deep[top[y]]) swap(x,y);
x=fa[top[x]];
}
if (deep[x]<deep[y]) swap(x,y);
return y;
}
bool in(int x,int y){return dfn[x]<=dfn[y]&&dfn[x]+size[x]->=dfn[y];}
void calc(int op)
{
int x=,y=;
for (int i=;i<=k;i++)
if (flag[i])
{
if (!x) x=u[i],y=v[i];
else
{
int p=u[i],q=v[i];
if (deep[x]>deep[p]) swap(x,p),swap(y,q);
if (in(x,p)&&in(p,y)) x=p,y=lca(y,q);
else return;
}
}
if (x==) return;
else if (op>) ans+=sum(x,y);
else ans+=inf-sum(x,y)+;
}
void dfs(int cur,int op)
{
if (cur>k) {calc(op);return;}
flag[cur]=;dfs(cur+,-op);
flag[cur]=;dfs(cur+,op);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3589.in","r",stdin);
freopen("bzoj3589.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<n;i++)
{
int x=read(),y=read();
addedge(x,y),addedge(y,x);
}
dfs1();
dfs2(,);
build(,,n);
int m=read();
while (m--)
{
int op=read();
if (op==)
{
int x=read(),y=read();
add(,dfn[x],dfn[x]+size[x]-,y);
}
if (op==)
{
k=read();ans=;
for (int i=;i<=k;i++) u[i]=read(),v[i]=read();
for (int i=;i<=k;i++) if (dfn[u[i]]>dfn[v[i]]) swap(u[i],v[i]);
dfs(,-);printf("%u\n",ans&p31);
}
}
return ;
}

BZOJ3589 动态树(树链剖分+容斥原理)的更多相关文章

  1. 线段树&数链剖分

    傻逼线段树,傻逼数剖 线段树 定义: 线段树是一种二叉搜索树,与区间树相似,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点. 使用线段树可以快速的查找某一个节点在若干条线段中出现 ...

  2. [LOJ3014][JOI 2019 Final]独特的城市——树的直径+长链剖分

    题目链接: [JOI 2019 Final]独特的城市 对于每个点,它的答案最大就是与它距离最远的点的距离. 而如果与它距离为$x$的点有大于等于两个,那么与它距离小于等于$x$的点都不会被计入答案. ...

  3. UOJ#30/Codeforces 487E Tourists 点双连通分量,Tarjan,圆方树,树链剖分,线段树

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ30.html 题目传送门 - UOJ#30 题意 uoj写的很简洁.清晰,这里就不抄一遍了. 题解 首先建 ...

  4. BZOJ1758[Wc2010]重建计划——分数规划+长链剖分+线段树+二分答案+树形DP

    题目描述 输入 第一行包含一个正整数N,表示X国的城市个数. 第二行包含两个正整数L和U,表示政策要求的第一期重建方案中修建道路数的上下限 接下来的N-1行描述重建小组的原有方案,每行三个正整数Ai, ...

  5. CF487E Tourists 圆方树、树链剖分

    传送门 注意到我们需要求的是两点之间所有简单路径中最小值的最小值,那么对于一个点双联通分量来说,如果要经过它,则一定会经过这个点双联通分量里权值最小的点 注意:这里不能缩边双联通分量,样例\(2\)就 ...

  6. 2019.01.08 codeforces 1009F. Dominant Indices(长链剖分)

    传送门 长链剖分模板题. 题意:给出一棵树,设fi,jf_{i,j}fi,j​表示iii的子树中距离点iii距离为jjj的点的个数,现在对于每个点iii要求出使得fif_ifi​取得最大值的那个jjj ...

  7. 【LOJ】#3014. 「JOI 2019 Final」独特的城市(长链剖分)

    LOJ#3014. 「JOI 2019 Final」独特的城市(长链剖分) 显然我们画一条直径,容易发现被统计的只可能是直径某个距离较远的端点到这个点的路径上的值 用一个栈统计可以被统计的点,然后我们 ...

  8. BZOJ 1758 / Luogu P4292 [WC2010]重建计划 (分数规划(二分/迭代) + 长链剖分/点分治)

    题意 自己看. 分析 求这个平均值的最大值就是分数规划,二分一下就变成了求一条长度在[L,R]内路径的权值和最大.有淀粉质的做法但是我没写,感觉常数会很大.这道题可以用长链剖分做. 先对树长链剖分. ...

  9. 【BZOJ-3589】动态树 树链剖分 + 线段树 + 线段覆盖(特殊的技巧)

    3589: 动态树 Time Limit: 30 Sec  Memory Limit: 1024 MBSubmit: 405  Solved: 137[Submit][Status][Discuss] ...

随机推荐

  1. QT 字符串的使用技巧总结

    QT 的字符串的 使用的总结. 1.字符串截取函数的使用 QString str; QString csv = "forename,middlename,surname,phone" ...

  2. http一次请求过程

    物理层:支持底层网络协议: 其中网络层支持IP协议: 传输层支持TCP协议,它是面向连接的: 应用层支持 http,ftp  tftp,SMTP,DHCP协议 一个完整的http请求过程: 1.浏览器 ...

  3. python 知识2

    零. type()函数怎么使用 type()的使用方法:type(对象)type()是接收一个对象当做参考,之后反回对象的相应类型.>>>type(1)<type 'int'& ...

  4. Mapreduce打印调试输出

    Mapreduce打印调试内容: 一.启动JobHistoryServer mr-jobhistory-daemon.sh start historyserver [hadoop@node11 sbi ...

  5. ES6 Promise 异步操作

    最近越来越喜欢与大家进行资源分享了,并且及时的同步到自己的园子内,为什么呢? 一.小插曲(气氛搞起) 在上个月末,由于领导的高度重视(haha,这个高度是有多高呢,185就好了),走进了公司骨干员工的 ...

  6. 面试2——java基础2

    11.MVC设计模型 mvc设计模型是一种使用model-view-controller(模型-视图-控制器)设计创建web应用程序的模式.是一种开发模式,好处是可以将界面和业务逻辑分离. model ...

  7. SJP's Blog

    This is SJP's blog. Here is a mirror web of his blog.

  8. openhtmltopdf 支持自定义字体、粗体

    一.支持自定义字体 private static void renderPDF(String html, OutputStream outputStream) throws Exception { t ...

  9. 浅谈nornalize.css(含源码)

    Normalize.css是一种CSS reset的替代方案.经过@necolas和@jon_neal花了几百个小时来努力研究不同浏览器的默认样式的差异,这个项目终于变成了现在这样. 我们创造norm ...

  10. BugkuCTF sql注入

    前言 写了这么久的web题,算是把它基础部分都刷完了一遍,以下的几天将持续更新BugkuCTF WEB部分的题解,为了不影响阅读,所以每道题的题解都以单独一篇文章的形式发表,感谢大家一直以来的支持和理 ...