显然容斥后转化为求树链的交。这个题非常良心的保证了查询的路径都是到祖先的,求交就很休闲了。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 200010
#define ui unsigned int
#define inf ((ui)4294967295)
#define p31 2147483647
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,p[N],fa[N],deep[N],son[N],size[N],top[N],dfn[N],L[N<<],R[N<<],u[],v[],flag[],k,cnt,t;
ui tree[N<<],lazy[N<<],ans;
struct data{int to,nxt;
}edge[N<<];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
void dfs1(int k)
{
size[k]=;
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=fa[k])
{
fa[edge[i].to]=k;
deep[edge[i].to]=deep[k]+;
dfs1(edge[i].to);
size[k]+=size[edge[i].to];
if (size[edge[i].to]>size[son[k]]) son[k]=edge[i].to;
}
}
void dfs2(int k,int from)
{
dfn[k]=++cnt;top[k]=from;
if (son[k]) dfs2(son[k],from);
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=fa[k]&&edge[i].to!=son[k]) dfs2(edge[i].to,edge[i].to);
}
void build(int k,int l,int r)
{
L[k]=l,R[k]=r;
if (l==r) return;
int mid=l+r>>;
build(k<<,l,mid);
build(k<<|,mid+,r);
}
void up(int k){tree[k]=tree[k<<]+tree[k<<|];}
void update(int k,ui x){tree[k]+=(R[k]-L[k]+)*x,lazy[k]+=x;}
void down(int k){update(k<<,lazy[k]),update(k<<|,lazy[k]),lazy[k]=;}
void add(int k,int l,int r,ui x)
{
if (L[k]==l&&R[k]==r){update(k,x);return;}
if (lazy[k]) down(k);
int mid=L[k]+R[k]>>;
if (r<=mid) add(k<<,l,r,x);
else if (l>mid) add(k<<|,l,r,x);
else add(k<<,l,mid,x),add(k<<|,mid+,r,x);
up(k);
}
ui query(int k,int l,int r)
{
if (L[k]==l&&R[k]==r) return tree[k];
if (lazy[k]) down(k);
int mid=L[k]+R[k]>>;
if (r<=mid) return query(k<<,l,r);
else if (l>mid) return query(k<<|,l,r);
else return query(k<<,l,mid)+query(k<<|,mid+,r);
}
ui sum(int x,int y)
{
ui ans=;
while (top[x]!=top[y])
{
if (deep[top[x]]<deep[top[y]]) swap(x,y);
ans+=query(,dfn[top[x]],dfn[x]);
x=fa[top[x]];
}
if (deep[x]<deep[y]) swap(x,y);
ans+=query(,dfn[y],dfn[x]);
return ans;
}
int lca(int x,int y)
{
while (top[x]!=top[y])
{
if (deep[top[x]]<deep[top[y]]) swap(x,y);
x=fa[top[x]];
}
if (deep[x]<deep[y]) swap(x,y);
return y;
}
bool in(int x,int y){return dfn[x]<=dfn[y]&&dfn[x]+size[x]->=dfn[y];}
void calc(int op)
{
int x=,y=;
for (int i=;i<=k;i++)
if (flag[i])
{
if (!x) x=u[i],y=v[i];
else
{
int p=u[i],q=v[i];
if (deep[x]>deep[p]) swap(x,p),swap(y,q);
if (in(x,p)&&in(p,y)) x=p,y=lca(y,q);
else return;
}
}
if (x==) return;
else if (op>) ans+=sum(x,y);
else ans+=inf-sum(x,y)+;
}
void dfs(int cur,int op)
{
if (cur>k) {calc(op);return;}
flag[cur]=;dfs(cur+,-op);
flag[cur]=;dfs(cur+,op);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3589.in","r",stdin);
freopen("bzoj3589.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<n;i++)
{
int x=read(),y=read();
addedge(x,y),addedge(y,x);
}
dfs1();
dfs2(,);
build(,,n);
int m=read();
while (m--)
{
int op=read();
if (op==)
{
int x=read(),y=read();
add(,dfn[x],dfn[x]+size[x]-,y);
}
if (op==)
{
k=read();ans=;
for (int i=;i<=k;i++) u[i]=read(),v[i]=read();
for (int i=;i<=k;i++) if (dfn[u[i]]>dfn[v[i]]) swap(u[i],v[i]);
dfs(,-);printf("%u\n",ans&p31);
}
}
return ;
}

BZOJ3589 动态树(树链剖分+容斥原理)的更多相关文章

  1. 线段树&数链剖分

    傻逼线段树,傻逼数剖 线段树 定义: 线段树是一种二叉搜索树,与区间树相似,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点. 使用线段树可以快速的查找某一个节点在若干条线段中出现 ...

  2. [LOJ3014][JOI 2019 Final]独特的城市——树的直径+长链剖分

    题目链接: [JOI 2019 Final]独特的城市 对于每个点,它的答案最大就是与它距离最远的点的距离. 而如果与它距离为$x$的点有大于等于两个,那么与它距离小于等于$x$的点都不会被计入答案. ...

  3. UOJ#30/Codeforces 487E Tourists 点双连通分量,Tarjan,圆方树,树链剖分,线段树

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ30.html 题目传送门 - UOJ#30 题意 uoj写的很简洁.清晰,这里就不抄一遍了. 题解 首先建 ...

  4. BZOJ1758[Wc2010]重建计划——分数规划+长链剖分+线段树+二分答案+树形DP

    题目描述 输入 第一行包含一个正整数N,表示X国的城市个数. 第二行包含两个正整数L和U,表示政策要求的第一期重建方案中修建道路数的上下限 接下来的N-1行描述重建小组的原有方案,每行三个正整数Ai, ...

  5. CF487E Tourists 圆方树、树链剖分

    传送门 注意到我们需要求的是两点之间所有简单路径中最小值的最小值,那么对于一个点双联通分量来说,如果要经过它,则一定会经过这个点双联通分量里权值最小的点 注意:这里不能缩边双联通分量,样例\(2\)就 ...

  6. 2019.01.08 codeforces 1009F. Dominant Indices(长链剖分)

    传送门 长链剖分模板题. 题意:给出一棵树,设fi,jf_{i,j}fi,j​表示iii的子树中距离点iii距离为jjj的点的个数,现在对于每个点iii要求出使得fif_ifi​取得最大值的那个jjj ...

  7. 【LOJ】#3014. 「JOI 2019 Final」独特的城市(长链剖分)

    LOJ#3014. 「JOI 2019 Final」独特的城市(长链剖分) 显然我们画一条直径,容易发现被统计的只可能是直径某个距离较远的端点到这个点的路径上的值 用一个栈统计可以被统计的点,然后我们 ...

  8. BZOJ 1758 / Luogu P4292 [WC2010]重建计划 (分数规划(二分/迭代) + 长链剖分/点分治)

    题意 自己看. 分析 求这个平均值的最大值就是分数规划,二分一下就变成了求一条长度在[L,R]内路径的权值和最大.有淀粉质的做法但是我没写,感觉常数会很大.这道题可以用长链剖分做. 先对树长链剖分. ...

  9. 【BZOJ-3589】动态树 树链剖分 + 线段树 + 线段覆盖(特殊的技巧)

    3589: 动态树 Time Limit: 30 Sec  Memory Limit: 1024 MBSubmit: 405  Solved: 137[Submit][Status][Discuss] ...

随机推荐

  1. C语言程序设计II—第九周教学

    第九周教学总结(22/4-28/4) 教学内容 本周的教学内容为: 9.1 输出平均分最高的学生信息 知识点:结构的概念.结构的定义形式.结构的嵌套定义.结构变量和结构成员变量的引用.重难点:结构变量 ...

  2. 开源HTTP解析器---http-parser和fast-http

    由于项目中遇到需要发送http请求,然后再解析接收到的响应.大概在网上搜索了一下,有两个比较不错,分别是http-parser和fast-http. http-parser是由C编写的工具:fast- ...

  3. Luogu3067 平衡的奶牛群 Meet in the middle

    题意:给出$N$个范围在$[1,10^8]$内的整数,问有多少种取数方案使得取出来的数能够分成两个和相等的集合.$N \leq 20$ 发现爆搜是$O(3^N)$的,所以考虑双向搜索. 先把前$3^\ ...

  4. odoo订餐系统之订单相关知识点理解

    1.对重载函数name_get的理解 第一,此函数位于Model基类中,返回值是一个list列表,列表中的每个值是如(key,value)形式的键值对,此处为(id,name). 第二,在自己的Mod ...

  5. python棋类游戏编写入门

    刚接触棋类游戏程序编写的朋友,往往比较迷惑,不知从何下手. 本文总结了棋类游戏的主程序流程.计算机走子策略.打分方式(以井字棋.黑白棋.五子棋为例),未使用minimax算法,比较简单,适合刚接触的朋 ...

  6. JVM规范系列:总结

    我们花了几天的时间来阅读<Java虚拟机规范>,了解要实现一个虚拟机应该包括什么内容.通过这么一次阅读,我们大致了解了虚拟机规范的内容. 第1章.对Java虚拟机进行了一些简单的介绍. 第 ...

  7. slurmdbd.conf系统初始配置

    # Archive info ArchiveJobs=yes ArchiveDir=/usr/local/globle/softs/slurm/16.05.3/archive/ ArchiveStep ...

  8. Terraform:简介

    在 DevOps 实践中,基础设施即代码如何落地是一个绕不开的话题.像 Chef,Puppet 等成熟的配置管理工具,都能够满足一定程度的需求,但有没有更友好的工具能够满足我们绝大多数的需求?笔者认为 ...

  9. Ionic 入门与实战之第二章第一节:Ionic 环境搭建之开发环境配置

    原文发表于我的技术博客 本文是「Ionic 入门与实战」系列连载的第二章第一节,主要对 Ionic 的开发环境配置做了简要的介绍,本文介绍的开发环境为 Mac 系统,Windows 系统基本类似,少许 ...

  10. "Linux内核分析"第六周实验报告

    张文俊 + 原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 1.进程的描述 ...