BZOJ2144跳跳棋——LCA+二分
题目描述

写一个程序,首先判断是否可以完成任务。如果可以,输出最少需要的跳动次数。
输入
输出
如果无解,输出一行NO。如果可以到达,第一行输出YES,第二行输出最少步数。
样例输入
0 3 5
样例输出
2
【范围】
100% 绝对值不超过10^9
#include<set>
#include<map>
#include<cmath>
#include<stack>
#include<queue>
#include<vector>
#include<bitset>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
ll a,b,c;
ll x,y,z;
ll dep1,dep2;
ll root1,root2;
ll l1,l2;
ll len;
void cmp(ll &a,ll &b,ll &c)
{
if(a>b)
{
swap(a,b);
}
if(a>c)
{
swap(a,c);
}
if(b>c)
{
swap(b,c);
}
}
ll find_root(ll a,ll b,ll c,ll &dep,ll &anc)
{
ll d1=b-a;
ll d2=c-b;
while(d1!=d2)
{
if(d1<d2)
{
ll s=d2/d1;
ll t=d2%d1;
if(t==0)
{
dep+=(s-1);
anc=d1;
return a+(s-1)*d1;
}
else
{
dep+=s;
a+=s*d1;
d2=t;
}
}
else
{
ll s=d1/d2;
ll t=d1%d2;
if(t==0)
{
dep+=(s-1);
anc=d2;
return a;
}
else
{
dep+=s;
d1=t;
}
}
}
dep=0;
anc=d1;
return a;
}
void get_fa(ll &a,ll &b,ll &c,ll dep)
{
ll d1=b-a;
ll d2=c-b;
while(dep>0)
{
if(d1<d2)
{
ll s=d2/d1;
ll t=d2%d1;
if(s>=dep)
{
a+=dep*d1;
b+=dep*d1;
if(b==c)
{
b=a;
a-=d1;
}
return ;
}
else
{
dep-=s;
a+=s*d1;
b+=s*d1;
d2=t;
}
}
else
{
ll s=d1/d2;
ll t=d1%d2;
if(s>=dep)
{
c-=dep*d2;
b-=dep*d2;
if(a==b)
{
b=c;
c+=d2;
}
return ;
}
else
{
dep-=s;
b-=s*d2;
c-=s*d2;
d1=t;
}
}
}
}
int main()
{
scanf("%lld%lld%lld",&a,&b,&c);
scanf("%lld%lld%lld",&x,&y,&z);
cmp(a,b,c);
cmp(x,y,z);
l1=find_root(a,b,c,dep1,root1);
l2=find_root(x,y,z,dep2,root2);
if(l1!=l2||root1!=root2)
{
printf("NO");
return 0;
}
if(dep1<dep2)
{
len+=dep2-dep1;
get_fa(x,y,z,len);
}
else
{
len+=dep1-dep2;
get_fa(a,b,c,len);
}
ll l=0;
ll r=min(dep1,dep2);
ll ans=0;
while(l<=r)
{
ll mid=(l+r)/2;
ll a1=a,b1=b,c1=c;
ll x1=x,y1=y,z1=z;
get_fa(a1,b1,c1,mid);
get_fa(x1,y1,z1,mid);
if(a1==x1&&b1==y1&&c1==z1)
{
ans=mid;
r=mid-1;
}
else
{
l=mid+1;
}
}
printf("YES\n");
printf("%lld",len+ans*2);
}
BZOJ2144跳跳棋——LCA+二分的更多相关文章
- 跳跳棋[LCA+二分查找]-洛谷1852
传送门 这真是一道神仙题 虽然我猜到了这是一道LCA的题 但是... 第一遍看题,我是怎么也没想到能和树形图扯上关系 并且用上LCA 但其实其实和上一道lightoj上的那道题很类似 只不过那时一道很 ...
- bzoj2144: 跳跳棋(二分/倍增)
思维好题! 可以发现如果中间的点要跳到两边有两种情况,两边的点要跳到中间最多只有一种情况. 我们用一个节点表示一种状态,那么两边跳到中间的状态就是当前点的父亲,中间的点跳到两边的状态就是这个点的两个儿 ...
- bzoj2144 跳跳棋 二分
[bzoj2144]跳跳棋 Description 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子.我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在a,b,c这三个位 ...
- P1852 跳跳棋 [LCA思想+二分答案]
题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有\(3\)颗棋子,分别在\(a,b,c\)这三个位置.我们要通过最少的跳动 ...
- bzoj 2144: 跳跳棋——倍增/二分
Description 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子.我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在a,b,c这三个位置.我们要通过最少的跳动把他 ...
- BZOJ2144 跳跳棋[建模+LCA]
思维题,思路比较神仙. 个人思路过程:个人只想到了只要中间棋子开始向外跳了,以后就不应该向内跳了,这样很蠢.所以应该要么先向内跳一会,要么直接开始中间的向外跳.不知道怎么处理,就卡住了. 20pts: ...
- BZOJ2144: 跳跳棋
传送门 神题一道. 考虑题目性质.首先对于一个状态,只存在四种情况,即最左/右边的点跳到中间,中间的点跳到左/右.而对于一个状态,显然第一种情况的两种分支不能同时存在,那么题目就可以理解为从$(a,b ...
- P1852 [国家集训队]跳跳棋
P1852 [国家集训队]跳跳棋 lca+二分 详细解析见题解 对于每组跳棋,我们可以用一个三元组(x,y,z)表示 我们发现,这个三元组的转移具有唯一性,收束性 也就是说,把每个三元组当成点,以转移 ...
- 跳跳棋——二分+建模LCA
题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在a,b,c这三个位置.我们要通过最少的跳动把他们的位置移动 ...
随机推荐
- Linux命令——cat/less/more的区别
cat命令:用于显示整个文件的内容,单独使用没有翻页功能,经常和 more 命令搭配使用,cat 命令还可以将数个文件合并成一个文件. more命令:让画面在显示满一页时暂停,此时可按空格健继续显示下 ...
- Omi框架学习之旅 - 获取DOM节点 及原理说明
虽然绝大部分情况下,开发者不需要去查找获取DOM,但是还是有需要获取DOM的场景,所以Omi提供了方便获取DOM节点的方式. 这是官网的话,但是我一直都需要获取dom,对dom操作,所以omi提供的获 ...
- 使用Webuploader大文件分片传输
背景:50G大文件的HTTP上传至服务器. 好了,根据这个命题,可以开始研究我们怎么做才能把这么大的文件上传成功. 分片上传是肯定的,断点续传也是要有的,进度可视化那就更好了,基于这些,我选择了Web ...
- bat无故报错打印混乱的解决
1. 下面语句加了一个无意义的ping操作.不加的时候经常报错,报操作数不是数字,实际上打印发现NOW值和格式并没有错误.怀疑是下面操作数太多了,而执行速度又太快,导致执行时总是很容易出错.通过增加一 ...
- ASP.NET的生命周期
我主要参考了这些文章 ASP.NET应用程序与页面生命周期, IIS处理Asp.net请求和 Asp.net页面生命周期 asp.net页面的生命周期 页面生命周期开始 (一)页面生命周期的主要阶段包 ...
- Intellij实用技巧
快捷键 Tradition 快捷键 介绍 Ctrl + Z 撤销 Ctrl + Shift + Z 取消撤销 Ctrl + X 剪切 Ctrl + C 复制 Ctrl + S 保存 Tab 缩进 Sh ...
- CF809D Hitchhiking in the Baltic States LIS、平衡树
传送门 看到最长上升子序列肯定是DP 设\(f_i\)表示计算到当前,长度为\(i\)的最长上升子序列的最后一项的最小值,显然\(f_i\)是一个单调递增的序列. 转移:对于当前计算的元素\(x\), ...
- 学习angularjs的ng-hide和ng-disabled
一,页面上有一个checkbox和一个文本框.切换checkbox能对文本框输入文本与否: <input type="checkbox" ng-model="ckS ...
- Angularjs演示Service功能
在angularjs中,我们可以自定义自己的service.可以说得是自定义的方法,函数. 下面我们一步一步来演示吧:首先为angularjs定义一个app: var demoApp = angula ...
- odoo 11导入外部数据过程记录
在开发过程中,遇见需要将SQL Server中的数据转移到Pg数据库的情况,那么如何做才能解决这一问题呢? 1.自己写代码,将数据从SQL Server到PG. 2.利用odoo自带的导入功能导入. ...