Chapter 3:A Tour of Machine Learning Classifiers Using Scikit-learn

3.1:Training a perceptron via scikit-learn

from sklearn import datasets
import numpy as np
iris = datasets.load_iris()
X = iris.data[:, [2, 3]]
y = iris.target
np.unique(y) from sklearn.cross_validation import train_test_split
#从150个样本中随机抽取30%的样本作为test_data
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3, random_state=0) #数据归一化
#StandardScaler estimated the parameters μ(sample mean) and (standard deviation)
#(x - mean)/(standard deviation)
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
sc.fit(X_train)
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test) #Perceptron分类
#eta0 is equivalent to the learning rate
from sklearn.linear_model import Perceptron
ppn = Perceptron(n_iter=40, eta0=0.1, random_state=0)
ppn.fit(X_train_std, y_train) y_pred = ppn.predict(X_test_std)
#y_test != y_pred
'''
array([False, False, False, False, False, False, False, False, False,
False, True, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, True, False, False, False, False, False, False, True,
False, True, False, False, False, False, False, False, False]) '''
print('Misclassified samples: %d' % (y_test != y_pred).sum())
#Misclassified samples: 4
#Thus, the misclassification error on the test dataset is 0.089 or 8.9 percent (4/45) #the metrics module:performance metrics
from sklearn.metrics import accuracy_score
print('Accuracy: %.2f' % accuracy_score(y_test, y_pred))
#Accuracy:0.91 #plot_decision_regions:visualize how well it separates the different flower samples
from matplotlib.colors import ListedColormap
import matplotlib.pyplot as plt def plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.02):
#setup marker generator and color map
markers = ('s', 'x', 'o', '^', 'v')
colors = ('red', 'blue', 'lightgreen', 'black', 'cyan')
cmap = ListedColormap(colors[:len(np.unique(y))]) # plot the decision surface
x1_min, x1_max = X[:, 0].min() -1, X[:, 0].max() + 1
x2_min, x2_max = X[:, 1].min() -1, X[:, 1].max() + 1
xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution))
Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
Z = Z.reshape(xx1.shape)
plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
plt.xlim(xx1.min(), xx1.max())
plt.ylim(xx2.min(), xx2.max()) # plot all samples
for idx, c1 in enumerate(np.unique(y)):
print idx,c1
plt.scatter(x=X[y == c1, 0], y=X[y == c1, 1], alpha=0.8, c=cmap(idx),marker=markers[idx],label=c1) #highlight test samples
if test_idx :
X_test, y_test = X[test_idx, :], y[test_idx] #把 corlor 设置为空,通过edgecolors来控制颜色
plt.scatter(X_test[:, 0],X_test[:, 1], color='',edgecolors='black', alpha=1.0, linewidths=2, marker='o',s=150, label='test set') X_combined_std = np.vstack((X_train_std, X_test_std))
y_combined = np.hstack((y_train, y_test))
plot_decision_regions(X=X_combined_std, y=y_combined, classifier=ppn, test_idx=range(105,150))
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.show()

3.2 Training a logistic regression model with scikit-learn

 sigmoid function:

import matplotlib.pyplot as plt
import numpy as np
def sigmoid(z):
return 1.0 / (1.0 + np.exp(-z))
z = np.arange(-7, 7, 0.1)
phi_z = sigmoid(z)
plt.plot(z, phi_z)
plt.axvline(0.0, color='k')
plt.axhspan(0.0, 1.0, facecolor='1.0', alpha=1.0, ls='dotted')
plt.axhline(y=0.5, ls='dotted', color='k')
plt.yticks([0.0, 0.5, 1.0])
plt.ylim(-0.1, 1.1)
plt.xlabel('z')
plt.ylabel('$\phi (z)$')
plt.show()

Python Machine Learning-Chapter3的更多相关文章

  1. Python机器学习 (Python Machine Learning 中文版 PDF)

    Python机器学习介绍(Python Machine Learning 中文版) 机器学习,如今最令人振奋的计算机领域之一.看看那些大公司,Google.Facebook.Apple.Amazon早 ...

  2. [Python & Machine Learning] 学习笔记之scikit-learn机器学习库

    1. scikit-learn介绍 scikit-learn是Python的一个开源机器学习模块,它建立在NumPy,SciPy和matplotlib模块之上.值得一提的是,scikit-learn最 ...

  3. Python -- machine learning, neural network -- PyBrain 机器学习 神经网络

    I am using pybrain on my Linuxmint 13 x86_64 PC. As what it is described: PyBrain is a modular Machi ...

  4. Python Machine Learning: Scikit-Learn Tutorial

    这是一篇翻译的博客,原文链接在这里.这是我看的为数不多的介绍scikit-learn简介而全面的文章,特别适合入门.我这里把这篇文章翻译一下,英语好的同学可以直接看原文. 大部分喜欢用Python来学 ...

  5. Python机器学习介绍(Python Machine Learning 中文版)

    Python机器学习 机器学习,如今最令人振奋的计算机领域之一.看看那些大公司,Google.Facebook.Apple.Amazon早已展开了一场关于机器学习的军备竞赛.从手机上的语音助手.垃圾邮 ...

  6. 《Python Machine Learning》索引

    目录部分: 第一章:赋予计算机从数据中学习的能力 第二章:训练简单的机器学习算法——分类 第三章:使用sklearn训练机器学习分类器 第四章:建立好的训练集——数据预处理 第五章:通过降维压缩数据 ...

  7. Getting started with machine learning in Python

    Getting started with machine learning in Python Machine learning is a field that uses algorithms to ...

  8. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

  9. 机器学习(Machine Learning)&深度学习(Deep Learning)资料

    <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...

  10. 机器学习(Machine Learning)&深入学习(Deep Learning)资料

    <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林. ...

随机推荐

  1. 《Linux内核》第七周 进程的切换和系统的一般执行过程 20135311傅冬菁

    进程的切换和系统的一般执行过程 一.内容总结与分析 进程调度与进程调度时机 进程调度需求的分类: 第一种分类方式: I/O -bound(频繁进行I/O,通常会花很多时间等待I/O操作) CPU-bo ...

  2. Java计算器(结对)

    一:题目简介 我们要做的是一个多功能计算器,Java程序编辑器是:图形界面.线程.流与文件等技术的综合应用. 图形界面的实现:考虑到简单.实用.高效等特点,就选择了Swing来完成实现,在选择组件上, ...

  3. Spring整合SpringMVC

    整合:把在springMVC配置文件中的spring提取出来整合为另一份配置文件 希望: 1).Spring的配置文件只是用来配置和业务逻辑有关的功能(数据源.事务控制.切面....) 2).Spri ...

  4. canvas高斯模糊算法

    对于模糊图片这个效果的实现,其实css3中的filter属性也能够实现,但是这个属性的兼容性不是很好,所以我们通常不用这种方法实现,而使用canvas配合JS实现. <span style=&q ...

  5. 查询数据SELECT 之单表查询

    一.单表查询的语法与关键字的执行优先级""" # 单表查询# 单标查询完整与法:# select distinct(关键字,代表查询的意思,后面跟)字段1,字段2...( ...

  6. ELK日志框架(1):安装Elasticsearch组建单服务器多节点集群

    ELK简介 最近有个需求搭建一套日志系统用于集成几个业务系统的日志提供快速的检索功能,目前是用Log4net存数据库+Error级别发邮件方式,也算简单暴力好用,但历史日志的模糊查询确实很慢,所以使用 ...

  7. jetty 介绍以及小例子

    Jetty 是一个开源的servlet容器,它为基于Java的web容器,例如JSP和servlet提供运行环境.Jetty是使用Java语言编写的,它的API以一组JAR包的形式发布.开发人员可以将 ...

  8. mysql 分页数据错乱

    最近在使用mysql 分页查询数据的时候发现返回的数据与预期的不一样,显示数据重复错乱. 在官方文档 有这样一句话 If multiple rows have identical values in ...

  9. RSA,JAVA私钥加密,C#公钥解密

    做这个东西在坑里爬了3天才爬出来,记录下供园友参考.C#程序员一枚,项目需要和Java做数据交互,对方甩了段密文和一个CER证书给我,然后我要对其密文进行解密. RSA 非对称加密,对方用私钥加密,我 ...

  10. iOS程序的启动执行顺序

    1 程序的入口 进入main函数, 设置AppDelegate称为函数的代理 2  程序完成加载 -[AppDelegate application:didFinishLaunchingWithOpt ...