CF535E Tavas and Pashmaks 单调栈、凸包
题意:有一场比赛,$N$个人参加。每个人有两种参数$a,b$,如果存在正实数$A,B$使得$\frac{A}{a_i} + \frac{B}{b_i}$在$i=x$处取得最大值(可以有多个最大值),则称选手$x$可以夺冠。问共有多少人能够夺冠。$N \leq 2 \times 10^5 , 1 \leq a , b \leq 10^4$
考虑将$(\frac{1}{a_i},\frac{1}{b_i})$看做平面上的点,我们的目标就是在这些点上求目标函数$z=Ax+By$的最小值(线性规划),而对于每一条这样的直线,都一定是与某一个凸包切于一个点或与这个凸包中的某条线重合。可以考虑到这就是若干$(\frac{1}{a_i},\frac{1}{b_i})$的点构成的左下凸包(也就是一个完整凸多边形的左下部分)。将点从大到小排序之后使用单调栈维护凸包即可。
有一个很重要的剪枝:当$a_i \leq a_j , b_i \leq b_j$时,$i$号无需计算
还要注意$a,b$相同的人的计算。
UPD:似乎上面很抽象,画个图解释一下
我们把上面的剪枝做完之后,得到的所有点的坐标横坐标递增,纵坐标递减,且都分布在第一象限。
画在图上就是这样子:

话说Dia画点竟然要用圆形填充,所以点会很大
我们考虑这些点在$z=Ax + By$的目标函数上的最小取值(也就是取一个点带入函数中,使得$z$最小)。
先说结论:不论$A,B$如何取值,最小值一定在下图图形中连上的点上取到。

那么为什么中间那个没连上的点不能取到最优解呢?
我们按照斜率绝对值从大到小观察选点情况,可以知道随着斜率绝对值变小,选择的点的横坐标会不断增加,一个点会成为最优解对应的斜率范围会是一段区间,也就是当斜率越过这个点对应的最优解区间之后,这个点一定不会对最优解产生贡献了。
那么我们考虑在什么情况下最优解会从一个点转移到另一个点。

我们将点从左往右编号。考虑上面两条直线。可以知道当直线的斜率在$[k2,k1]$范围内时,$2$号点会产生最优解,而当$k=k1$时,$4$号点也会产生最优解,而当$k \geq k1$时,最优解就会从$2$号点转移为$4$号点了。
所以我们可以发现,最优解转移时直线的斜率就是这两个点之间的斜率。
接下来我们考虑如何排除非最优解了。

考虑上图中从$2$号点转移到$3$号点与$4$号点的情况。我们发现从$2$号点转移到$3$号点的斜率是$k2$,而从$2$号点转移到$4$号点的斜率是$k1$,且$k1 < k2$。这意味着斜率绝对值从大到小的过程中,$4$号点会比$3$号点先到达最优解转移时的斜率,所以$2$号点的最优解会先转移到$4$号点,而$3$号点无法从$2$号点转移,就是无用的节点了。
所以依据上面的研究,我们可以通过单调栈维护这样子的一个类似凸多边形的结构,模型如下:
①把$1$号点与$2$号点加入栈中
②准备加入一个新的点$i$
③考虑当前栈中是否有无用节点。我们设栈顶下标为$hd$,我们就可以考虑$Stack_{hd}$与$i$从$Stack_{hd - 1}$转移最优解时的斜率(也就是$Stack_{hd}$与$i$和$Stack_{hd - 1}$相连得到的直线的斜率),如果$i$的斜率绝对值大于$Stack_{hd}$的斜率,弹出栈顶,如果栈大小大于$1$,进入③,否则进入④
④加入当前点。如果还有新的点,进入②,否则进入⑤
⑤统计单调栈内的点,对应答案。
#include<bits/stdc++.h>
#define ld long double
#define eps 1e-10
using namespace std;
inline int read(){
;
char c = getchar();
while(!isdigit(c))
c = getchar();
while(isdigit(c)){
a = (a << ) + (a << ) + (c ^ ');
c = getchar();
}
return a;
}
;
struct point{
int a , b , ind;
}now[MAXN];
int nxt[MAXN] , pre[MAXN] , S[MAXN] , tl;
bool can[MAXN];
bool cmp(point a , point b){
if(a.a == b.a)
return a.b > b.b;
return a.a > b.a;
}
ld calcK(point a , point b){
return (ld)a.a * b.a * (b.b - a.b) / a.b / b.b / (b.a - a.a);
}
int main(){
int N = read();
; i <= N ; i++){
now[i].a = read();
now[i].b = read();
now[i].ind = i;
nxt[i] = i + ;
pre[i] = i - ;
}
sort(now + , now + N + , cmp);
].b;
//双向链表排除冗余状态
; i <= N ; i++)
if(now[i].b <= maxB){
nxt[pre[i]] = nxt[i];
pre[nxt[i]] = pre[i];
}
else
maxB = now[i].b;
S[] = ;
tl = ;
//通过斜率维护单调栈(与斜率优化很相似)
] ; i <= N ; i = nxt[i]){
&& calcK(now[i] , now[S[tl - ]]) < calcK(now[S[tl - ]] , now[S[tl - ]]))
tl--;
S[tl++] = i;
}
; i < tl ; i++){
can[now[S[i]].ind] = ;
//还原原来位置相同的点
; j <= N && now[S[i]].a == now[j].a && now[S[i]].b == now[j].b ; j++)
can[now[j].ind] = ;
}
; i <= N ; i++)
if(can[i])
printf("%d " , i);
;
}
鉴于某人说我直接蒯题解,再来更个精度易爆炸的做法
考虑$\frac{A}{a_i} + \frac{B}{b_i}$,除掉$B$可以得到一个自变量为$\frac{A}{B}$的线,将这些线用斜率优化的方式加入就可以了,实质也是维护一个凸包。但是这种做法对于精度要求很高,似乎要把斜率与截距同乘$10^9$才能保证精度(或者使用一般式)
CF535E Tavas and Pashmaks 单调栈、凸包的更多相关文章
- BZOJ_1007_ [HNOI2008]_水平可见直线_(单调栈+凸包)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1007 给出一些直线,沿着y轴从上往下看,能看到多少条直线. 分析 由于直线相交,会遮挡住一些直 ...
- Building(单调栈+凸包)
Problem Description Once upon a time Matt went to a small town. The town was so small and narrow tha ...
- CF535E Tavas and Pashmaks
今天Fakehu考的T1. 大致意思就是有n个人每个人有两个速度\(v_1,v_2\),比赛有两个路程\(A,B\),最后时间是\(A/v_1+B/v_2\).求每个人是否可能成为冠军中的一个. 显然 ...
- [CSP-S模拟测试]:导弹袭击(数学+凸包+单调栈)
题目背景 $Guess$准备向敌军阵地发起进攻了!$Guess$的武器是自动制导导弹.然而在机房是不允许游戏的,所以班长$XZY$对游戏界面进行了降维打击,结果... 题目描述 众所周知,环境因素对导 ...
- 【Cf #299 C】Tavas and Pashmaks(单调栈,凸性)
一个经典的二维数点模型,如果某个人 $ x $ 两个速度都比另一个人 $ y $ 大,显然 $y$ 是不可能成为winner的. 但这里只考虑两个人$x$,$y$在两个属性各有千秋的时候,一定存在正整 ...
- 【bzoj5089】最大连续子段和 分块+单调栈维护凸包
题目描述 给出一个长度为 n 的序列,要求支持如下两种操作: A l r x :将 [l,r] 区间内的所有数加上 x : Q l r : 询问 [l,r] 区间的最大连续子段和. 其中,一 ...
- [CSP-S模拟测试]:A(单调栈维护凸包+二分答案)
题目传送门(内部题150) 输入格式 第一行两个整数$N,Q$. 接下来的$N$行,每行两个整数$a_i,b_i$. 接下来的$Q$行,每行一个整数$x$. 输出格式 对于每个询问,输出一行一个整数表 ...
- Function:凸包,单调栈,题意转化,单峰函数三分,离线处理
很难啊啊啊!!! bzoj5380原题,应该可以粘题面. 问题转换: 有一个n列1e9行的矩阵,每一列上都写着相同的数字Ai. 你从位置(x,y)出发每一步可以向左上方或左方走一步,最后走到第一行. ...
- Lost My Music:倍增实现可持久化单调栈维护凸包
题目就是求树上每个节点的所有祖先中(ci-cj)/(dj-di)的最小值. 那么就是(ci-cj)/(di-dj)的最大值了. 对于每一个点,它的(ci,di)都是二维坐标系里的一个点 要求的就是祖先 ...
随机推荐
- javascript选项卡切换样式
HTML代码 <ul class="touzi_xuan1" id="qixian"> <li>****: </li> &l ...
- onkeypress 在js函数返回false后没有反应
一.解决方案: 把 onkeypress = "function()" 改为 onkeypress = "event.returnValue=function()&quo ...
- mysql5.7 安装和多源复制实践
MySQL 5.7发布后,在复制方面有了很大的改进和提升.比如开始支持多源复制(multi-source)以及真正的支持多线程复制了.多源复制可以使用基于二进制日子的复制或者基于事务的复制.下面我们说 ...
- 修改eclipse的背景色(转载)
eclipse操作界面默认颜色为白色.对于我们长期使用电脑编程的人来说,白色很刺激我们的眼睛,所以我经常会改变workspace的背景色,使眼睛舒服一些. 设置方法如下: 1.打开window-> ...
- Angular基础(八) Observable & RxJS
对于一个应用来说,获取数据的方法可以有很多,比如:Ajax, Websockets, LocalStorage, Indexdb, Service Workers,但是如何整合多种数据源.如何避免BU ...
- Units in Android
一般使用dp,不使用px.sp啥时候用呢?给TextView设置文字大小的时候用.
- (网页)readonly和disabled的区别(转)
转自脚本之家: 标签的readonly和disabled属性的区别: 在表单元素中,readonly和disable有类似之处,因为它们都可以将一些表单元素设置为"不可用"状态,当 ...
- JavaScript大杂烩8 - 理解文本解析的"黄金搭档"
文本解析"黄金搭档" - String与RegExp对象 文本解析是任何语言中最常用的功能,JavaScript中也是一样,而正则表达式作为最常用的方式,JavaScript也同样 ...
- [Linux.NET]在CentOS 7.x中编译方式安装Nginx
Nginx是一款轻量级的Web 服务器/反向代理服务器及电子邮件(IMAP/POP3)代理服务器,并在一个BSD-like 协议下发行.由俄罗斯的程序设计师Igor Sysoev所开发,供俄罗斯大型的 ...
- GUI练习3
将阿里山的积分卡拉斯的发生的咖啡机啊圣考虑到发送到敬爱费卢卡斯加