使用Pandas_UDF快速改造Pandas代码
1. Pandas_UDF介绍
PySpark和Pandas之间改进性能和互操作性的其核心思想是将Apache Arrow作为序列化格式,以减少PySpark和Pandas之间的开销。
Pandas_UDF是在PySpark2.3中新引入的API,由Spark使用Arrow传输数据,使用Pandas处理数据。Pandas_UDF是使用关键字pandas_udf作为装饰器或包装函数来定义的,不需要额外的配置。目前,有两种类型的Pandas_UDF,分别是Scalar(标量映射)和Grouped Map(分组映射)。
1.1 Scalar
Scalar Pandas UDF用于向量化标量操作。常常与select和withColumn等函数一起使用。其中调用的Python函数需要使用pandas.Series作为输入并返回一个具有相同长度的pandas.Series。具体执行流程是,Spark将列分成批,并将每个批作为数据的子集进行函数的调用,进而执行panda UDF,最后将结果连接在一起。
下面的示例展示如何创建一个scalar panda UDF,计算两列的乘积:
import pandas as pd from pyspark.sql.functions import col, pandas_udf
from pyspark.sql.types import LongType # 声明函数并创建UDF def multiply_func(a, b):
return a * b multiply = pandas_udf(multiply_func, returnType=LongType()) x = pd.Series([1, 2, 3])
df = spark.createDataFrame(pd.DataFrame(x, columns=["x"])) # Execute function as a Spark vectorized UDF
df.select(multiply(col("x"), col("x"))).show()
# +-------------------+
# |multiply_func(x, x)|
# +-------------------+
# | 1|
# | 4|
# | 9|
# +-------------------+
1.2 Grouped Map
Grouped map(分组映射)panda_udf与groupBy().apply()一起使用,后者实现了“split-apply-combine”模式。“split-apply-combine”包括三个步骤:
- 使用DataFrame.groupBy将数据分成多个组。
- 对每个分组应用一个函数。函数的输入和输出都是pandas.DataFrame。输入数据包含每个组的所有行和列。
- 将结果合并到一个新的DataFrame中。
要使用groupBy().apply(),需要定义以下内容:
- 定义每个分组的Python计算函数,这里可以使用pandas包或者Python自带方法。
- 一个StructType对象或字符串,它定义输出DataFrame的格式,包括输出特征以及特征类型。
需要注意的是,StructType对象中的Dataframe特征顺序需要与分组中的Python计算函数返回特征顺序保持一致。
此外,在应用该函数之前,分组中的所有数据都会加载到内存,这可能导致内存不足抛出异常。
下面的例子展示了如何使用groupby().apply() 对分组中的每个值减去分组平均值。
from pyspark.sql.functions import pandas_udf, PandasUDFType df = spark.createDataFrame(
[(1, 1.0), (1, 2.0), (2, 3.0), (2, 5.0), (2, 10.0)],
("id", "v")) @pandas_udf("id long, v double", PandasUDFType.GROUPED_MAP)
def subtract_mean(pdf):
# pdf is a pandas.DataFrame
v = pdf.v
return pdf.assign(v=v - v.mean()) df.groupby("id").apply(subtract_mean).show()
# +---+----+
# | id| v|
# +---+----+
# | 1|-0.5|
# | 1| 0.5|
# | 2|-3.0|
# | 2|-1.0|
# | 2| 4.0|
# +---+----+
1.3 Grouped Aggregate
Grouped aggregate Panda UDF类似于Spark聚合函数。Grouped aggregate Panda UDF常常与groupBy().agg()和pyspark.sql.window一起使用。它定义了来自一个或多个的聚合。级数到标量值,其中每个pandas.Series表示组或窗口中的一列。 需要注意的是,这种类型的UDF不支持部分聚合,组或窗口的所有数据都将加载到内存中。此外,目前只支持Grouped aggregate Pandas UDFs的无界窗口。 下面的例子展示了如何使用这种类型的UDF来计算groupBy和窗口操作的平均值:
from pyspark.sql.functions import pandas_udf, PandasUDFType
from pyspark.sql import Window df = spark.createDataFrame(
[(1, 1.0), (1, 2.0), (2, 3.0), (2, 5.0), (2, 10.0)],
("id", "v")) @pandas_udf("double", PandasUDFType.GROUPED_AGG)
def mean_udf(v):
return v.mean() df.groupby("id").agg(mean_udf(df['v'])).show()
# +---+-----------+
# | id|mean_udf(v)|
# +---+-----------+
# | 1| 1.5|
# | 2| 6.0|
# +---+-----------+ w = Window \
.partitionBy('id') \
.rowsBetween(Window.unboundedPreceding, Window.unboundedFollowing)
df.withColumn('mean_v', mean_udf(df['v']).over(w)).show()
# +---+----+------+
# | id| v|mean_v|
# +---+----+------+
# | 1| 1.0| 1.5|
# | 1| 2.0| 1.5|
# | 2| 3.0| 6.0|
# | 2| 5.0| 6.0|
# | 2|10.0| 6.0|
# +---+----+------+
2. 快速使用Pandas_UDF
需要注意的是schema变量里的字段名称为pandas_dfs() 返回的spark dataframe中的字段,字段对应的格式为符合spark的格式。
这里,由于pandas_dfs()功能只是选择若干特征,所以没有涉及到字段变化,具体的字段格式在进入pandas_dfs()之前已通过printSchema()打印。如果在pandas_dfs()中使用了pandas的reset_index()方法,且保存index,那么需要在schema变量中第一个字段处添加'index'字段及对应类型(下段代码注释内容)
import pandas as pd
from pyspark.sql.types import *
from pyspark.sql import SparkSession
from pyspark.sql.functions import pandas_udf, PandasUDFType spark = SparkSession.builder.appName("demo3").config("spark.some.config.option", "some-value").getOrCreate()
df3 = spark.createDataFrame(
[(18862669710, '/未知类型', 'IM传文件', 'QQ接收文件', 39.0, '2018-03-08 21:45:45', 178111558222, 1781115582),
(18862669710, '/未知类型', 'IM传文件', 'QQ接收文件', 39.0, '2018-03-08 21:45:45', 178111558222, 1781115582),
(18862228190, '/移动终端', '移动终端应用', '移动腾讯视频', 292.0, '2018-03-08 21:45:45', 178111558212, 1781115582),
(18862669710, '/未知类型', '访问网站', '搜索引擎', 52.0, '2018-03-08 21:45:46', 178111558222, 1781115582)],
('online_account', 'terminal_type', 'action_type', 'app', 'access_seconds', 'datetime', 'outid', 'class')) def compute(x):
result = x[
['online_account', 'terminal_type', 'action_type', 'app', 'access_seconds', 'datetime', 'outid', 'class', 'start_time', 'end_time']]
return result schema = StructType([
# StructField("index", DoubleType()),
StructField("online_account", LongType()),
StructField("terminal_type", StringType()),
StructField("action_type", StringType()),
StructField("app", StringType()),
StructField("access_seconds", DoubleType()),
StructField("datetime", StringType()),
StructField("outid", LongType()),
StructField("class", LongType()),
StructField("end_time", TimestampType()),
StructField("start_time", TimestampType()), ]) @pandas_udf(schema, functionType=PandasUDFType.GROUPED_MAP)
def g(df):
print('ok')
mid = df.groupby(['online_account']).apply(lambda x: compute(x))
result = pd.DataFrame(mid) # result.reset_index(inplace=True, drop=False)
# return result
df3 = df3.withColumn("end_time", df3['datetime'].cast(TimestampType()))
df3 = df3.withColumn('end_time_convert_seconds', df3['end_time'].cast('long').cast('int'))
time_diff = df3.end_time_convert_seconds - df3.access_seconds
df3 = df3.withColumn('start_time', time_diff.cast('int').cast(TimestampType()))
df3 = df3.drop('end_time_convert_seconds')
df3.printSchema()
aa = df3.groupby(['online_account']).apply(g)
aa.show()
3. 优化Pandas_UDF代码
在上一小节中,我们是通过Spark方法进行特征的处理,然后对处理好的数据应用@pandas_udf装饰器调用自定义函数。但这样看起来有些凌乱,因此可以把这些Spark操作都写入pandas_udf方法中。
注意:上小节中存在一个字段没有正确对应的bug,而pandas_udf方法返回的特征顺序要与schema中的字段顺序保持一致!
import pandas as pd
from pyspark.sql.types import *
from pyspark.sql import SparkSession
from pyspark.sql.functions import pandas_udf, PandasUDFType spark = SparkSession.builder.appName("demo3").config("spark.some.config.option", "some-value").getOrCreate()
df3 = spark.createDataFrame(
[(18862669710, '/未知类型', 'IM传文件', 'QQ接收文件', 39.0, '2018-03-08 21:45:45', 178111558222, 1781115582),
(18862669710, '/未知类型', 'IM传文件', 'QQ接收文件', 39.0, '2018-03-08 21:45:45', 178111558222, 1781115582),
(18862228190, '/移动终端', '移动终端应用', '移动腾讯视频', 292.0, '2018-03-08 21:45:45', 178111558212, 1781115582),
(18862669710, '/未知类型', '访问网站', '搜索引擎', 52.0, '2018-03-08 21:45:46', 178111558222, 1781115582)],
('online_account', 'terminal_type', 'action_type', 'app', 'access_seconds', 'datetime', 'outid', 'class')) def compute(x):
x['end_time'] = pd.to_datetime(x['datetime'], errors='coerce', format='%Y-%m-%d')
x['end_time_convert_seconds'] = pd.to_timedelta(x['end_time']).dt.total_seconds().astype(int)
x['start_time'] = pd.to_datetime(x['end_time_convert_seconds'] - x['access_seconds'], unit='s')
x = x.sort_values(by=['start_time'], ascending=True)
result = x[['online_account', 'terminal_type', 'action_type', 'app', 'access_seconds', 'datetime', 'outid', 'class','start_time', 'end_time']]
return result schema = StructType([
StructField("online_account", LongType()),
StructField("terminal_type", StringType()),
StructField("action_type", StringType()),
StructField("app", StringType()),
StructField("access_seconds", DoubleType()),
StructField("datetime", StringType()),
StructField("outid", LongType()),
StructField("class", LongType()),
StructField("start_time", TimestampType()),
StructField("end_time", TimestampType()), ]) @pandas_udf(schema, functionType=PandasUDFType.GROUPED_MAP)
def g(df):
print('ok')
mid = df.groupby(['online_account']).apply(lambda x: compute(x))
result = pd.DataFrame(mid)
return result df3.printSchema()
aa = df3.groupby(['online_account']).apply(g)
aa.show()
4. Pandas_UDF与toPandas的区别
- @pandas_udf 创建一个向量化的用户定义函数(UDF),利用了panda的矢量化特性,是udf的一种更快的替代方案,因此适用于分布式数据集。
- toPandas将分布式spark数据集转换为pandas数据集,对pandas数据集进行本地化,并且所有数据都驻留在驱动程序内存中,因此此方法仅在预期生成的pandas DataFrame较小的情况下使用。
换句话说,@pandas_udf使用panda API来处理分布式数据集,而toPandas()将分布式数据集转换为本地数据,然后使用pandas进行处理。
5. 参考文献
[1] PySpark Usage Guide for Pandas with Apache Arrow
[2] pyspark.sql.functions.pandas_udf
使用Pandas_UDF快速改造Pandas代码的更多相关文章
- 快速上手pandas(上)
pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation to ...
- eclipse快速收缩展开代码
快速折叠所有代码和展开所有代码都是CTRL+SHIFT+/
- Visual Studio使用正则表达式快速统计总共代码行数
原文:Visual Studio使用正则表达式快速统计总共代码行数 按CTRL+SHIFT+F,勾上支持正则表达式,然后输入搜索内容: <span style="font-family ...
- Emmet 快速编写html代码
简介 快速编写HTML代码 语法简单,语法类似css选择器,30分钟内你就可以搞定它.开发商为sublime.atom.brackets.hbuilder.webstrom等编辑器或IDE提供对应的插 ...
- js分析 快速定位 js 代码, 还原被混淆压缩的 js 代码
-1.目录 0.参考 1.页面表现 2. 慢镜头观察:低速网络请求 3. 从头到尾调试:Fiddler 拦截 index.html 并添加 debugger; 4. 快速定位 js 代码 5. 还原被 ...
- VsCode中使用Emmet神器快速编写HTML代码
一.Emmet简述 Emmet (前身为 Zen Coding) 是一个能大幅度提高前端开发效率的一个工具. 在前端开发的过程中,一大部分的工作是写 HTML.CSS 代码.特别是手动编写 HTML ...
- 使用Emmet 快速生成HTML代码
在前端开发的过程中,一个最繁琐的工作就是写 HTML.CSS 代码.数量繁多的标签.属性.尖括号.标签闭合等,让前端们甚是苦恼.于是,我向大家推荐 Emmet,它提供了一套非常简单的语法规则,书写起来 ...
- [UE4]使用UnrealVS扩展快速编译C++代码
一.如果UE4 编辑器已经打开,则VS中的重新生成项目将不能使用,一定要关了UE4 编辑器才可以.一般不是有VS自身的编译UE4的C++代码 二.epic提供了UnrealVS扩展,可以快速编译C++ ...
- eclipse快速复制一行代码(向下/向上)快捷键修改设置
eclipse快速复制一行代码(向下/向上)快捷键修改设置 2015年10月05日 17:46:57 xiaoguanglgc 阅读数:20906 标签: eclipse快速复制一行快捷键冲突英特尔 ...
随机推荐
- MySQL——优化嵌套查询和分页查询
优化嵌套查询 嵌套查询(子查询)可以使用SELECT语句来创建一个单列的查询结果,然后把这个结果作为过滤条件用在另一个查询中.嵌套查询写起来简单,也容易理解.但是,有时候可以被更有效率的连接(JOIN ...
- LeetCode题解之Insert into a Binary Search Tree
1.题目描述 2.分析 插入算法. 3.代码 TreeNode* insertIntoBST(TreeNode* root, int val) { insert(root, val); return ...
- python redis 终端 redis-cli.py mini版本 redis 终端管理工具
Python redis-cli.py Python3 redis-cli 命令行管理工具 redis终端工具 由于最近测试redis未授权访问漏洞,发现本机没有安装redis,不能运行redis-c ...
- 选择is或者as操作符而不是做强制类型转换
无论何时,正确选择使用as运算符进行类型转换.比盲目的强制类型转换更安全,而且在运行时效率更高. 用as和is进行转换时,并不是对所有用户定义的类型都能完成,只是在运行时类型和目标类型匹配时,转换才能 ...
- Spring Boot 静态页面
spring boot项目只有src目录,没有webapp目录,会将静态访问(html/图片等)映射到其自动配置的静态目录,如下 /static /public /resources /META-IN ...
- Servlet (HttpServletResponse)对象
1.setStatus(int status)方法:用于设置HTTP响应消息的状态码,并生成响应状态行.响应状态行中的状态描述信息直接与状态码相关,HTTP版本由服务器确定,因此只需要通过这个方法设置 ...
- 国内常用的几个NTP时间服务器
问题描述: 经常Windows或者Linux系统上面的时间跟我们本地的时间不一致 有时候就是Windows的Internet时间设置里面的Windows自带的时间同步服务器不好使 Linux配置NTP ...
- Python读取PE文件(exe/dll)中的时间戳
代码原文地址: https://www.snip2code.com/Snippet/144008/Read-the-PE-Timestamp-from-a-Windows-Exe https://gi ...
- vsftpd不支持目录软链接的解决办法
vsftpd本身不支持软连接,而在用FTP共享的时候又不想移动文件位置,便在网上找到了一个workaround: Linux内核从2..0开始支持把一部分文件系统挂载到文件系统中的其他位置,mount ...
- beta版本汇总
deta版本五天汇总 day1 day2 day3 day4 day5 GitHub地址 前端代码github地址 后端代码github地址 这里说明一下我们队伍的安排风格: 第一天:明确安排前后端的 ...