[Spark][Python]Spark 访问 mysql , 生成 dataframe 的例子:

mydf001=sqlContext.read.format("jdbc").option("url","jdbc:mysql://localhost/loudacre")\
.option("dbtable","accounts").option("user","training").option("password","training").load()

In [10]: mydf001=sqlContext.read.format("jdbc").option("url","jdbc:mysql://localhost/loudacre")\
....: .option("dbtable","accounts").option("user","training").option("password","training").load()
17/10/03 05:59:53 INFO hive.HiveContext: default warehouse location is /user/hive/warehouse
17/10/03 05:59:53 INFO hive.HiveContext: Initializing metastore client version 1.1.0 using Spark classes.
17/10/03 05:59:53 INFO client.ClientWrapper: Inspected Hadoop version: 2.6.0-cdh5.7.0
17/10/03 05:59:53 INFO client.ClientWrapper: Loaded org.apache.hadoop.hive.shims.Hadoop23Shims for Hadoop version 2.6.0-cdh5.7.0
17/10/03 05:59:56 INFO hive.metastore: Trying to connect to metastore with URI thrift://localhost.localdomain:9083
17/10/03 05:59:56 INFO hive.metastore: Opened a connection to metastore, current connections: 1
17/10/03 05:59:56 INFO hive.metastore: Connected to metastore.
17/10/03 05:59:56 INFO session.SessionState: Created local directory: /tmp/c2d22d09-7425-4bb3-94c3-39cb32267c7d_resources
17/10/03 05:59:56 INFO session.SessionState: Created HDFS directory: /tmp/hive/training/c2d22d09-7425-4bb3-94c3-39cb32267c7d
17/10/03 05:59:56 INFO session.SessionState: Created local directory: /tmp/training/c2d22d09-7425-4bb3-94c3-39cb32267c7d
17/10/03 05:59:56 INFO session.SessionState: Created HDFS directory: /tmp/hive/training/c2d22d09-7425-4bb3-94c3-39cb32267c7d/_tmp_space.db
17/10/03 05:59:56 INFO session.SessionState: No Tez session required at this point. hive.execution.engine=mr.

In [11]:

In [11]: type(mydf001)
Out[11]: pyspark.sql.dataframe.DataFrame

In [12]: mydf001.count()
17/10/03 06:00:29 INFO spark.SparkContext: Starting job: count at NativeMethodAccessorImpl.java:-2
17/10/03 06:00:29 INFO scheduler.DAGScheduler: Registering RDD 2 (count at NativeMethodAccessorImpl.java:-2)
17/10/03 06:00:29 INFO scheduler.DAGScheduler: Got job 0 (count at NativeMethodAccessorImpl.java:-2) with 1 output partitions
17/10/03 06:00:29 INFO scheduler.DAGScheduler: Final stage: ResultStage 1 (count at NativeMethodAccessorImpl.java:-2)
17/10/03 06:00:29 INFO scheduler.DAGScheduler: Parents of final stage: List(ShuffleMapStage 0)
17/10/03 06:00:29 INFO scheduler.DAGScheduler: Missing parents: List(ShuffleMapStage 0)
17/10/03 06:00:29 INFO scheduler.DAGScheduler: Submitting ShuffleMapStage 0 (MapPartitionsRDD[2] at count at NativeMethodAccessorImpl.java:-2), which has no missing parents
17/10/03 06:00:30 INFO storage.MemoryStore: Block broadcast_0 stored as values in memory (estimated size 11.0 KB, free 11.0 KB)
17/10/03 06:00:31 INFO storage.MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 5.2 KB, free 16.1 KB)
17/10/03 06:00:31 INFO storage.BlockManagerInfo: Added broadcast_0_piece0 in memory on localhost:36793 (size: 5.2 KB, free: 208.8 MB)
17/10/03 06:00:31 INFO spark.SparkContext: Created broadcast 0 from broadcast at DAGScheduler.scala:1006
17/10/03 06:00:31 INFO scheduler.DAGScheduler: Submitting 1 missing tasks from ShuffleMapStage 0 (MapPartitionsRDD[2] at count at NativeMethodAccessorImpl.java:-2)
17/10/03 06:00:31 INFO scheduler.TaskSchedulerImpl: Adding task set 0.0 with 1 tasks
17/10/03 06:00:31 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, localhost, partition 0,PROCESS_LOCAL, 1911 bytes)
17/10/03 06:00:31 INFO executor.Executor: Running task 0.0 in stage 0.0 (TID 0)
17/10/03 06:00:32 INFO codegen.GenerateMutableProjection: Code generated in 425.82589 ms
17/10/03 06:00:32 INFO codegen.GenerateUnsafeProjection: Code generated in 78.278589 ms
17/10/03 06:00:33 INFO codegen.GenerateMutableProjection: Code generated in 84.676206 ms
17/10/03 06:00:33 INFO codegen.GenerateUnsafeRowJoiner: Code generated in 60.144399 ms
17/10/03 06:00:33 INFO codegen.GenerateUnsafeProjection: Code generated in 95.977074 ms
17/10/03 06:00:34 INFO jdbc.JDBCRDD: closed connection
17/10/03 06:00:34 INFO executor.Executor: Finished task 0.0 in stage 0.0 (TID 0). 1334 bytes result sent to driver
17/10/03 06:00:34 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 3081 ms on localhost (1/1)
17/10/03 06:00:34 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool
17/10/03 06:00:34 INFO scheduler.DAGScheduler: ShuffleMapStage 0 (count at NativeMethodAccessorImpl.java:-2) finished in 3.163 s
17/10/03 06:00:34 INFO scheduler.DAGScheduler: looking for newly runnable stages
17/10/03 06:00:34 INFO scheduler.DAGScheduler: running: Set()
17/10/03 06:00:34 INFO scheduler.DAGScheduler: waiting: Set(ResultStage 1)
17/10/03 06:00:34 INFO scheduler.DAGScheduler: failed: Set()
17/10/03 06:00:34 INFO scheduler.DAGScheduler: Submitting ResultStage 1 (MapPartitionsRDD[5] at count at NativeMethodAccessorImpl.java:-2), which has no missing parents
17/10/03 06:00:34 INFO storage.MemoryStore: Block broadcast_1 stored as values in memory (estimated size 12.1 KB, free 28.3 KB)
17/10/03 06:00:34 INFO storage.MemoryStore: Block broadcast_1_piece0 stored as bytes in memory (estimated size 5.6 KB, free 33.9 KB)
17/10/03 06:00:34 INFO storage.BlockManagerInfo: Added broadcast_1_piece0 in memory on localhost:36793 (size: 5.6 KB, free: 208.8 MB)
17/10/03 06:00:34 INFO spark.SparkContext: Created broadcast 1 from broadcast at DAGScheduler.scala:1006
17/10/03 06:00:34 INFO scheduler.DAGScheduler: Submitting 1 missing tasks from ResultStage 1 (MapPartitionsRDD[5] at count at NativeMethodAccessorImpl.java:-2)
17/10/03 06:00:34 INFO scheduler.TaskSchedulerImpl: Adding task set 1.0 with 1 tasks
17/10/03 06:00:34 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 1.0 (TID 1, localhost, partition 0,NODE_LOCAL, 1999 bytes)
17/10/03 06:00:34 INFO executor.Executor: Running task 0.0 in stage 1.0 (TID 1)
17/10/03 06:00:34 INFO storage.ShuffleBlockFetcherIterator: Getting 1 non-empty blocks out of 1 blocks
17/10/03 06:00:34 INFO storage.ShuffleBlockFetcherIterator: Started 0 remote fetches in 32 ms
17/10/03 06:00:35 INFO codegen.GenerateMutableProjection: Code generated in 52.636353 ms
17/10/03 06:00:35 INFO codegen.GenerateMutableProjection: Code generated in 49.757505 ms
17/10/03 06:00:35 INFO executor.Executor: Finished task 0.0 in stage 1.0 (TID 1). 1666 bytes result sent to driver
17/10/03 06:00:35 INFO scheduler.DAGScheduler: ResultStage 1 (count at NativeMethodAccessorImpl.java:-2) finished in 0.795 s
17/10/03 06:00:35 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 1.0 (TID 1) in 789 ms on localhost (1/1)
17/10/03 06:00:35 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 1.0, whose tasks have all completed, from pool
17/10/03 06:00:35 INFO scheduler.DAGScheduler: Job 0 finished: count at NativeMethodAccessorImpl.java:-2, took 6.451521 s
Out[12]: 129761

In [13]:

[Spark][Python]Spark 访问 mysql , 生成 dataframe 的例子:的更多相关文章

  1. [Spark][Python]spark 从 avro 文件获取 Dataframe 的例子

    [Spark][Python]spark 从 avro 文件获取 Dataframe 的例子 从如下地址获取文件: https://github.com/databricks/spark-avro/r ...

  2. Spark(Python) 从内存中建立 RDD 的例子

    Spark(Python) 从内存中建立 RDD 的例子: myData = ["Alice","Carlos","Frank"," ...

  3. [Spark][Python]Spark Python 索引页

    Spark Python 索引页 为了查找方便,建立此页 === RDD 基本操作: [Spark][Python]groupByKey例子

  4. [spark][python]Spark map 处理

    map 就是对一个RDD的各个元素都施加处理,得到一个新的RDD 的过程 [training@localhost ~]$ cat names.txtYear,First Name,County,Sex ...

  5. crontab定时运行python脚本访问MySQL遇到问题

    最近写了一个python脚本来定时备份MySQL数据库.具体实现如下: 1)python脚本中使用os.system("mysqldump -h127.0.0.1 -uroot -ppass ...

  6. python+pymysql访问mysql数据库

    今天跟大家分享两种场景的python连接MySQL方法: 场景一:连接远程MySQL 首先,安装pymysql:在命令行执行pip install pymysql指令. 然后,导入pymysql: i ...

  7. [Spark][Python]Spark Join 小例子

    [training@localhost ~]$ hdfs dfs -cat people.json {"name":"Alice","pcode&qu ...

  8. 今天看到可以用sqlalchemy在python上访问Mysql

    from sqlalchemy import create_engine, MetaData, and_ 具体的还没有多看.

  9. 基础 ADO.NET 访问MYSQL 与 MSSQL 数据库例子

    虽然实际开发时都是用 Entity 了,但是基础还是要掌握和复习的 ^^ //set connection string, server,database,username,password MySq ...

随机推荐

  1. cve-list

    dlink CVE-2018-17786 CVE-2018-17787 CVE-2018-17880 CVE-2018-17881 mongoose CVE-2018-10945 openwrt CV ...

  2. python:异常处理、自定义异常、断言

    什么是异常: 当程序遭遇某些非正常问题的时候就会抛出异常:比如int()只能处理能转化成int的对象,如果传入一个不能转化的对象就会报错并抛出异常 常用的异常有: ValueError :传入无效的错 ...

  3. python之装饰器函数

    本章内容 引入 装饰器的形成过程 开放封闭原则 谈装饰器主要功能和装饰器固定结构 带参数的装饰器 多个装饰器装饰一个函数 引入 作为一个会写函数的python开发,我们从今天开始要去公司上班了.写了一 ...

  4. aws linux主机root帐号登录

    默认情况下,aws主机必须使用pem密码文件并且以ec2-user用户登录系统,之后很多操作都必须用sudo来以root权限执行操作,显得比较麻烦. 以下来自知乎的一个问答,亲测ok ## AWS E ...

  5. python常用模块之re模块(正则)

    python种的re模块常用的5种方法,分别是re.match   re.search  re.findall  re.split  re.sub. 在介绍五种方法之前,需要介绍一下正则的基础. . ...

  6. python编程的简洁代码

    1.列表间元素操作 L1 = [1,3,5,]L2 = [2,5,3,1,8]x = set(L1)y = set(L2)#差集print(y - x)#交集print(y&x)#并集prin ...

  7. python 之路初(一):pycharm 安装 和 环境配置 和 中文乱码问题

    从健身和学习中我一体会到坚持的力量.想写写东西的想法已经好久了,就是不知道怎么开始.最近生活开始给我各种攻击和磨练,我从声嘶力竭到沉默到默默坚持自己,改变自己并总结告诉自己:少说多看,看破不说破,宁愿 ...

  8. nginx基础知识总结

    1.nginx的工作模式 master/worker工作模式: 一个master进程: 负载加载和分析配置文件.管理worker进程.平滑重启升级等. 一个或多个worker进程 处理并响应用户请求 ...

  9. Mysql基础之 基础知识解释

    Mysql基础知识 RDBMS:关系型数据库管理系统.是将数据组织成相关的行和列的系统 存储过程:是存储在数据库中的一段声明性语句.触发器.java.php等都可以调用其存储过程.早期的mysql版本 ...

  10. 简单规划dp sumsets

    Farmer John commanded his cows to search for different sets of numbers that sum to a given number. T ...