DBSCAN算法

  基本概念:(Density-Based Spatial Clustering of Applications with Noise)

    核心对象:若某个点的密度达到算法设定的阈值则其为核心点。(即 r 邻域内点的数量不小于 minPts)
    ε-邻域的距离阈值:设定的半径r
    直接密度可达:若某点p在点q的 r 邻域内,且q是核心点则p-q直接密度可达。
    密度可达:若有一个点的序列q0、q1、...qk,对任意qi-qi-1是直接密度可达的,则称从q0到qk密度可达,这实际上是直接密度可达的“传播”。就像传销一样,发展下线。

    密度相连:若从某核心点p出发,点q和点k都是密度可达的,则称点q和点k是密度相连的。
    边界点:属于某一个类的非核心点,不能发展下线了
    噪声点:不属于任何一个类簇的点,从任何一个核心点出发都是密度不可达的,也叫离群点

  

  工作流程

  给定:

  参数D:输入数据集
  参数ε:指定半径
  MinPts:密度阈值(比如5)

    

  参数选择:
    半径ε,可以根据K距离来设定:找突变点
    K距离:给定数据集P={p(i); i=0,1,...n},计算点P(i)到集合D的子集S中所有点之间的距离,距离按照从小到大的顺序排序,d(k)就被称为k-距离。
    MinPts::k-距离中k的值,一般取的小一些,多次尝试

  优势:

  • 不需要指定簇个数
  • 可以发现任意形状的簇
  • 擅长找到离群点(检测任务)
  • 两个参数就够了

  劣势:

  • 高维数据有些困难(可以做降维)
  • 参数难以选择(参数对结果的影响非常大)
  • Sklearn中效率很慢(数据削减策略)

      

      

机器学习--聚类系列--DBSCAN算法的更多相关文章

  1. 机器学习--聚类系列--K-means算法

    一.聚类 聚类分析是非监督学习的很重要的领域.所谓非监督学习,就是数据是没有类别标记的,算法要从对原始数据的探索中提取出一定的规律.而聚类分析就是试图将数据集中的样本划分为若干个不相交的子集,每个子集 ...

  2. 基于密度的聚类之Dbscan算法

    一.算法概述 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个比较有代表性的基于密度的聚类算法.与划分和层次 ...

  3. python大战机器学习——聚类和EM算法

    注:本文中涉及到的公式一律省略(公式不好敲出来),若想了解公式的具体实现,请参考原著. 1.基本概念 (1)聚类的思想: 将数据集划分为若干个不想交的子集(称为一个簇cluster),每个簇潜在地对应 ...

  4. 聚类之dbscan算法

    简要的说明: dbscan为一个密度聚类算法,无需指定聚类个数. python的简单实例: # coding:utf-8 from sklearn.cluster import DBSCAN impo ...

  5. 【转】常用聚类算法(一) DBSCAN算法

    原文链接:http://www.cnblogs.com/chaosimple/p/3164775.html#undefined 1.DBSCAN简介 DBSCAN(Density-Based Spat ...

  6. 常用聚类算法(一) DBSCAN算法

    1.DBSCAN简介 DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种基于密度 ...

  7. 聚类和EM算法——K均值聚类

    python大战机器学习——聚类和EM算法   注:本文中涉及到的公式一律省略(公式不好敲出来),若想了解公式的具体实现,请参考原著. 1.基本概念 (1)聚类的思想: 将数据集划分为若干个不想交的子 ...

  8. 机器学习 - 算法 - 聚类算法 K-MEANS / DBSCAN算法

    聚类算法 概述 无监督问题 手中无标签 聚类 将相似的东西分到一组 难点 如何 评估, 如何 调参 基本概念 要得到的簇的个数  - 需要指定 K 值 质心 - 均值, 即向量各维度取平均 距离的度量 ...

  9. Python机器学习笔记:K-Means算法,DBSCAN算法

    K-Means算法 K-Means 算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛.K-Means 算法有大量的变体,本文就从最传统的K-Means算法学起,在其基础上学习 ...

随机推荐

  1. (线段树)Balanced Lineup --POJ --3264

    链接: 对于POJ老是爆,我也是醉了, 链接等等再发吧! http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82832#problem/G 只 ...

  2. Android SQLiteOpenHelper Sqlite数据库升级onUpgrade

    Android Sqlite数据库升级,在Android APP开发之中,非常常见: 在确定原来的数据库版本号之后,在原来数据库版本号+1,就会执行onUpgrade方法,进行数据库升级操作: 在on ...

  3. Microsoft SQL Server 2012 管理 (2): Auditing

    -- Demostratin 2A (Using SQL Server Audit) -- Step 1: Use the master database USE master; GO -- Step ...

  4. GitHub Android 开源项目汇总 (转)

    转自:http://blog.csdn.net/ithomer/article/details/8882236 GitHub 上的开源项目不胜枚举,越来越多的开源项目正在迁移到GitHub平台上.基于 ...

  5. SQL Server 错误:924 解决方法

    USE master; GO DECLARE @SQL VARCHAR(MAX); SET @SQL='' SELECT @SQL=@SQL+'; KILL '+RTRIM(SPID) FROM ma ...

  6. C#使用Linq对DataGridView进行模糊查找

    针对DataGridView中已进行过数据绑定,即已向DataGridView中添加了一些数据,可以结合Linq查询,并让匹配查询的行高亮显示,如下图:     具体实现如下:   [csharp] ...

  7. Mysql-基础+安装指南

    安装指南: https://www.cnblogs.com/majj/p/9160383.html  小马哥 下载完后初始化操作数据库: 1. 将文件放在 : G:\软件\mysql-8.0.15-w ...

  8. Day44 数据库的操作

    视图操作: 1.左连接查询 select * from person left join dept on person.dept_id = dept.did 2. 右连接 3. 内连接  inner ...

  9. 三个分段的.tar.gz文件,合并并解压

    1.合并使用spilt分割的文件 # cat sxrt5.0.dvd1.tar.gzaa sxrt5.0.dvd1.tar.gzab sxrt5.0.dvd1.tar.gzac >>sxr ...

  10. Mac OS 10.12 - Gogland和在Windows中使用的不同!!

    刚刚在Mac OS 10.12用Gogland写了一个小小的GO语言测试程序,经过一番尝试才算把Gogland配置好,写出这个测试程序!Gogland在Mac OS 10.12里和Windows里面确 ...