[NOI导刊2010提高&洛谷P1774]最接近神的人

Description

破解了符文之语,小FF开启了通往地下的道路。当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古代人进行某种活动的图案。而石门上方用古代文写着“神的殿堂”。小FF猜想里面应该就有王室的遗产了。但现在的问题是如何打开这扇门……

仔细研究后,他发现门上的图案大概是说:古代人认为只有智者才是最容易接近神明的。而最聪明的人往往通过一种仪式选拔出来。仪式大概是指,即将隐退的智者为他的候选人写下一串无序的数字,并让他们进行一种操作,即交换序列中相邻的两个元素。而用最少的交换次数使原序列变成不下降序列的人即是下一任智者。

小FF发现门上同样有着n个数字。于是他认为打开这扇门的秘诀就是找到让这个序列变成不下降序列所需要的最小次数。但小FF不会……只好又找到了你,并答应事成之后与你三七分……

输入格式:

第一行为一个整数n,表示序列长度

第二行为n个整数,表示序列中每个元素。

输出格式:一个整数ans,即最少操作次数。

Solution

要求最少操作次数使得原序列变成不下降序列,其实就是求原序列中逆序对的个数。

考虑离散后用树状数组求逆序对(原理参考我的博文:http://www.cnblogs.com/COLIN-LIGHTNING/p/8621294.html)

Code

#include<iostream>
#include<cmath>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std; int a[500100],b[500100],c[500100],n,m,i,j,k; inline int rd(){
int x=0;
char c=getchar();
bool f=false;
while(!isdigit(c)){
if(c=='-') f=true;
c=getchar();
}
while(isdigit(c)){
x=(x<<1)+(x<<3)+(c^48);
c=getchar();
}
return f?-x:x;
} void discretize(){
sort(b+1,b+1+n);
unique(b+1,b+1+n)-b-1;
for(int i=1;i<=n;++i) a[i]=lower_bound(b+1,b+1+n,a[i])-b;
} inline int lowbit(int x){return x&-x;} int add(int x,int k){
for(int i=x;i<=n;i+=lowbit(i)) c[i]+=k;
} int sum(int x){
int ret=0;
for(int i=x;i>0;i-=lowbit(i)) ret+=c[i];
return ret;
} int main(){
memset(c,0,sizeof(c));
n=rd();
for(i=1;i<=n;++i) a[i]=b[i]=rd();
discretize();
long long ans=0;
for(i=n;i>0;--i){
add(a[i],1);
ans+=sum(a[i]-1);
}
printf("%lld\n",ans);
return 0;
}

[NOI导刊2010提高&洛谷P1774]最接近神的人 题解(树状数组求逆序对)的更多相关文章

  1. [NOIP2013提高&洛谷P1966]火柴排队 题解(树状数组求逆序对)

    [NOIP2013提高&洛谷P1966]火柴排队 Description 涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度. 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相 ...

  2. 洛谷P1774 最接近神的人_NOI导刊2010提高(02)(求逆序对)

    To 洛谷.1774 最接近神的人 题目描述 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古代人进行某种活动的图案.而石门上方用古代文写着“神的 ...

  3. 洛谷P1774 最接近神的人_NOI导刊2010提高(02) [2017年6月计划 线段树03]

    P1774 最接近神的人_NOI导刊2010提高(02) 题目描述 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古代人进行某种活动的图案.而石门 ...

  4. 洛谷 P1774 最接近神的人_NOI导刊2010提高(02)

    题目描述 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古代人进行某种活动的图案.而石门上方用古代文写着“神的殿堂”.小FF猜想里面应该就有王室的 ...

  5. 洛谷——P1774 最接近神的人_NOI导刊2010提高(02)

    https://www.luogu.org/problem/show?pid=1774 题目描述 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古 ...

  6. 洛谷P1774 最接近神的人

    题目描述 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古代人进行某种活动的图案.而石门上方用古代文写着“神的殿堂”.小FF猜想里面应该就有王室的 ...

  7. NOIP 2013 洛谷P1966 火柴排队 (树状数组求逆序对)

    对于a[],b[]两个数组,我们应选取其中一个为基准,再运用树状数组求逆序对的方法就行了. 大佬博客:https://www.cnblogs.com/luckyblock/p/11482130.htm ...

  8. [NOI导刊2010提高]黑匣子

    OJ题号:洛谷1801 思路:建立一个大根堆.一个小根堆.大根堆维护前i小的元素,小根堆维护当前剩下的元素. #include<cstdio> #include<queue> ...

  9. 洛谷-跑步-NOI导刊2010提高

    新牛到部队, CG 要求它们每天早上搞晨跑,从A农场跑到B农场.从A农场到B农场中有n-2个路口,分别标上号,A农场为1号, B农场为n号,路口分别为 2 ..n -1 号,从A农场到B农场有很多条路 ...

随机推荐

  1. oracle greatest(),least( ) ,coalesce()

    --场景1: select pt, greatest(wm), least(wm) from (select s.producttype pt, wm_concat(s.productid) wm f ...

  2. 基于html5的多图片上传,预览

    基于html5的多图片上传 本文是建立在张鑫旭大神的多文图片传的基础之上. 首先先放出来大神多图片上传的博客地址:http://www.zhangxinxu.com/wordpress/2011/09 ...

  3. 笔记之分布式文件系统(DFS)

    不知何故,老外都挺喜欢使用DFS,但是国内公司用这个的不多.一个具体的需求就是,备份服务器在国外,所以启用DFS把国内的数据同步一份到国外进行备份.最近有机会接触DFS,把一些心得体会记录一下. 1. ...

  4. IPV6 国内进展情况

    国家下一代互联网产业技术创新战略联盟(以下简称“产业联盟”),近日在北京发布了我国首份IPv6业务用户体验监测报告(以下简称<报告>).该<报告>监测了我国固定宽带的IPv6普 ...

  5. Java乐观锁、悲观锁

    乐观锁 乐观锁(Optimistic Lock), 顾名思义,就是很乐观,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号 ...

  6. 在输入密码框中眼睛睁开可以看见数字,眼睛闭上看不见数字怎么用JS实现

    无论做那个项目,登录注册页面总是避免不了的,那怎么用js来控制密码的显示和隐藏呢?先看一下效果图: HTML代码如下: <div>         <label for=" ...

  7. Windows系统下搭建Appium自动化测试框架

    简介 一种开源的测试框架(http://appium.io/) 能够用来测试原生Android/iOS应用.混合应用以及webapp 通过webdriver协议来操作应用,其核心是一个web服务器,接 ...

  8. UVA10047_The Monocycle

    这题....有点奇葩,但是不难. 在矩形方阵里,某人可以往前走或者左拐右拐.都需要消耗一个单位时间. 问某人从一个点走向另一个点的最短时间,并且走过的路程是5的倍数. 由于n,m都小,直接f[n][m ...

  9. idea的protobuf使用

    1.安装插件 2.添加依赖 <?xml version="1.0" encoding="UTF-8"?> <project xmlns=&qu ...

  10. AtCoder Grand Contest 003

    AtCoder Grand Contest 003 A - Wanna go back home 翻译 告诉你一个人每天向哪个方向走,你可以自定义他每天走的距离,问它能否在最后一天结束之后回到起点. ...