链接:

http://poj.org/problem?id=2031

Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 6011   Accepted: 2989

Description

You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task. 
The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.

All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.

You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors.

You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.

Input

The input consists of multiple data sets. Each data set is given in the following format.


x1 y1 z1 r1 
x2 y2 z2 r2 
... 
xn yn zn rn

The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.

The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character.

Each of x, y, z and r is positive and is less than 100.0.

The end of the input is indicated by a line containing a zero.

Output

For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.

Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.

Sample Input

3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0

Sample Output

20.000
0.000
73.834

代码:

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <algorithm>
using namespace std; const int N = ;
const int INF = 0xfffffff; struct node
{
double x, y, z, r;
}s[N]; int n;
double J[N][N], dist[N];
bool vis[N]; double Prim()
{
int i, j, index;
double ans=; memset(vis, , sizeof(vis));
vis[]=; for(i=; i<=n; i++)
dist[i]=J[][i]; for(i=; i<n; i++)
{
double MIN=INF;
for(j=; j<=n; j++)
{
if(!vis[j] && dist[j]<MIN)
{
index=j;
MIN=dist[j];
}
}
vis[index]=;
if(MIN<INF)
ans += MIN; for(j=; j<=n; j++)
{
if(!vis[j] && dist[j]>J[index][j] )
dist[j]=J[index][j];
}
}
return ans;
} int main ()
{ while(scanf("%d", &n),n)
{
int i, j; memset(s, , sizeof(s));
memset(J, , sizeof(J));
for(i=; i<=n; i++)
scanf("%lf%lf%lf%lf", &s[i].x, &s[i].y, &s[i].z, &s[i].r); for(i=; i<=n; i++)
for(j=; j<i; j++)
{
double k=sqrt((s[i].x-s[j].x)*(s[i].x-s[j].x)+(s[i].y-s[j].y)*(s[i].y-s[j].y)+(s[i].z-s[j].z)*(s[i].z-s[j].z))-s[i].r-s[j].r;
if(k<)
J[i][j]=J[j][i]=;
else
J[i][j]=J[j][i]=k;
} double ans=Prim(); printf("%.3f\n", ans); }
return ;
}

(最小生成树) Building a Space Station -- POJ -- 2031的更多相关文章

  1. Building a Space Station POJ - 2031

    Building a Space Station POJ - 2031 You are a member of the space station engineering team, and are ...

  2. Building a Space Station POJ 2031 【最小生成树 prim】

    http://poj.org/problem?id=2031 Description You are a member of the space station engineering team, a ...

  3. Building a Space Station POJ - 2031 三维最小生成树,其实就是板子题

    #include<iostream> #include<cmath> #include<algorithm> #include<cstdio> usin ...

  4. C - Building a Space Station - poj 2031

    空间站是有一些球状的房间组成的,现在有一些房间但是没有相互连接,你需要设计一些走廊使他们都相通,当然,有些房间可能会有重合(很神奇的样子,重合距离是0),你需要设计出来最短的走廊使所有的点都连接. 分 ...

  5. POJ 2031 Building a Space Station【经典最小生成树】

    链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  6. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...

  7. poj 2031 Building a Space Station【最小生成树prime】【模板题】

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5699   Accepte ...

  8. POJ 2031:Building a Space Station 最小生成树

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6083   Accepte ...

  9. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5173   Accepte ...

随机推荐

  1. GIS on CentOS 7 之 PostgreSQL & PostGIS

    PostgreSQL & PostGIS 安装postgresql 配置好yum源之后,使用yum info postgresql可发现 postgresql的版本为9.2.23,若想安装最新 ...

  2. JAVA 打印流与转换流

    转换流主要有两个 InputStreamReader 和 OutputStreamWriter 1. InputStreamReader 主要是将字节流输入流转换成字符输入流 2. OutputStr ...

  3. java 可伸缩阻塞队列实现

    最近一年多写的最虐心的代码.必须好好复习java并发了.搞了一晚上终于测试都跑通过了,特此纪念,以资鼓励! import java.util.ArrayList; import java.util.L ...

  4. linux基础命令:

    linux基础命令: 显示 echo 输出我写的内容 ls 查看当前目录的文件 pwd 查看当前目录 ifconfig 查看网卡信息 grep 过滤 -v 取反 -n man 查看命令的帮助信息 md ...

  5. vs2015安装出问题

    win7系统需要更新serverpage1包,更新完就ok了,ie不用升级到ie10

  6. centos7.5配置双网卡上网

    一.环境及说明 当初有这个需求,主要是帮一个高校的客户搭建一个大数据集群,使用的是校园网,交换机上一个端口只能连接一部电脑上网,不能通过路由组建子网,确保集群中的服务器有子网ip的同时,也能够通过公网 ...

  7. 10-Linux与windows文件互传-pscp坑---- 'pscp' 不是内部或外部命令,也不是可运行的程序或批处理文件

    1.下载pscp工具http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html 2.拷贝到C:\Windows\System32 如 ...

  8. Fragment 生命周期 全局变量的声明位置

    public class Fragment_shouye extends Fragment { private List<Zixun_shouye> datas; private TopV ...

  9. linux 下 php 安装 Gearman

    Gearman是一个分发任务的程序框架,它会对作业进行排队自动分配到一系列机器上.gearman跨语言跨平台,很方便的实现异步后台任务.   一个Gearman请求的处理过程涉及三个角色: Clien ...

  10. viewstamp replication: A new primary copy method to support highly-avaliable d

    为了提高服务能力或者服务稳定,往往需要把数据重复布署,也就是replication.重复带来的问题是,更新的时候会带来不一致.一种比较简单的方法是,在N台重复的机器里选一台作为主机,其他作备份,只能通 ...