题面

要我们把边定向,最大化留下来的三元环数目......并不能直接做,考虑容斥,去掉不合法的数目。

那么三个点不成环当且仅当有一个点出度为2一个点入度为2,发现最终答案就是$C_n^3-\sum C_{outdeg}^2$,然后因为下凸函数和费用流相似的性质可以拆边费用流:

每个点向汇点连一坨流量为$1$费用为$0,1,2...$的边,然后再把每条边向连接的点连流量为$1$费用为$0$的边表示使得一个点出度加$1$,最后原点向每条边连流量为$1$费用为$0$的边

 #include<queue>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,M=,inf=1e9;
int p[N],noww[*M],goal[*M],flow[*M],cost[*M];
int mflw[N],mcst[N],pren[N],pree[N],queu[N],degr[N];
int game[N][N],gamx[N],gamy[N],numb[N]; queue<int> qs;
int n,m,s,t,t1,t2,t3,t4,id,rd,cnt,num,ans;
void link(int f,int t,int v,int c)
{
noww[++cnt]=p[f],p[f]=cnt;
goal[cnt]=t,flow[cnt]=v,cost[cnt]=c;
noww[++cnt]=p[t],p[t]=cnt;
goal[cnt]=f,flow[cnt]=,cost[cnt]=-c;
}
void Init(int st,int ed)
{
memset(mflw,0x3f,sizeof mflw);
memset(mcst,0x3f,sizeof mcst);
memset(queu,,sizeof queu),pren[ed]=-;
qs.push(st),queu[st]=true,mcst[st]=;
}
bool SP(int st,int ed)
{
Init(st,ed);
while(!qs.empty())
{
int tn=qs.front();
qs.pop(),queu[tn]=false;
for(int i=p[tn],g;i;i=noww[i])
if(mcst[g=goal[i]]>mcst[tn]+cost[i]&&flow[i])
{
pree[g]=i,pren[g]=tn;
mcst[g]=mcst[tn]+cost[i];
mflw[g]=min(mflw[tn],flow[i]);
if(!queu[g]) qs.push(g),queu[g]=true;
}
}
return ~pren[ed];
}
void MCMF(int st,int ed)
{
while(SP(st,ed))
{
ans+=mflw[ed]*mcst[ed],id=ed;
while(id!=st)
{
flow[pree[id]]-=mflw[ed];
flow[pree[id]^]+=mflw[ed];
id=pren[id];
}
}
}
int main()
{
scanf("%d",&n),cnt=,s=n+,num=t=n+;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
scanf("%d",&game[i][j]);
if(game[i][j]==)
{
if(i<=j)
{
num++,gamx[num]=i,gamy[num]=j;
link(num,i,,),link(num,j,,);
numb[i]++,numb[j]++,link(s,num,,);
}
}
else degr[i]+=game[i][j];
}
for(int i=;i<=n;i++)
{
ans+=degr[i]*degr[i];
for(int j=;j<=numb[i];j++)
link(i,t,,*(degr[i]+j)-);
}
MCMF(s,t);
printf("%d\n",n*(n-)*(n-)/-(ans-n*(n-)/)/);
for(int i=t+;i<=num;i++)
{
int oppo,numx=gamx[i],numy=gamy[i];
for(int j=p[i];j;j=noww[j])
if(goal[j]!=s&&!flow[j])
{oppo=goal[j]; break;}
game[numx][numy]=oppo==numx;
game[numy][numx]=game[numx][numy]^;
}
for(int i=;i<=n;i++,puts(""))
for(int j=;j<=n;j++)
printf("%d ",game[i][j]);
return ;
}

解题:WC 2007 石头剪刀布的更多相关文章

  1. WC 2007 剪刀石头布

    WC 2007 剪刀石头布 看到这个三元环的问题很容易可以考虑到求不合法的三元环的数量的最小值. 什么情况不合法?既然不合法,当且仅当三元环中有一个人赢了另外两个人.所以我们考虑对于一个人而言,如果她 ...

  2. 解题:SCOI 2007 蜥蜴

    题面 拆点跑最大流 所有能跑出去的点连向汇点,容量为inf 原点连向所有初始有蜥蜴的点,容量为1 每根柱子拆成两个点“入口”和“出口”,入口向出口连容量为高度的边,出口向别的有高度的柱子的入口连容量为 ...

  3. 「WC 2007」剪刀石头布

    题目链接 戳我 \(Solution\) 直接求很明显不太好求,于是考虑不构成剪刀石头布的情况. 我们现在假设一个人\(i\)赢了\(x\)场,那么就会有\(\frac{x*(x-1)}{2}\) 我 ...

  4. 解题:WC 2018 州区划分

    题面 WC之前写的,补一补,但是基本就是学新知识了 首先可以枚举子集$3^n$转移,优化是额外记录每个集合选取的个数,然后按照选取个数从小到大转移.转移的时候先FWT成“点值”转移完了IFWT回去乘逆 ...

  5. BZOJ 4864: [BeiJing 2017 Wc]神秘物质 解题报告

    4864: [BeiJing 2017 Wc]神秘物质 Description 21ZZ 年,冬. 小诚退休以后, 不知为何重新燃起了对物理学的兴趣. 他从研究所借了些实验仪器,整天研究各种微观粒子. ...

  6. 洛谷 P3620 [APIO/CTSC 2007]数据备份 解题报告

    P3620 [APIO/CTSC 2007]数据备份 题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同 ...

  7. 解题:WC 2006 水管局长

    题面 初见LCT,动态最小生成树+链上查询max,具体做法是把边转换成点(LCT只能维护点) 时光倒流,先把最后剩的连起来.然后查询就看链上最大值,修改看看链上最大值是否大于当前边,如果是就断开原来的 ...

  8. 解题:POI 2007 Tourist Attractions

    题面 事实上这份代码在洛谷过不去,因为好像要用到一些压缩空间的技巧,我并不想(hui)写(捂脸) 先预处理$1$到$k+1$这些点之间相互的最短路和它们到终点的最短路,并记录下每个点能够转移到时的状态 ...

  9. 解题:APIO/CTSC 2007 数据备份

    题面 用双向链表把相邻两项的差串起来,用大根堆维护价值,每次贪心取最大的$x$.取完之后打标记删掉$pre[x]$和$nxt[x]$,之后用$val[pre[x]]+val[nxt[x]]-val[x ...

随机推荐

  1. SMR解析

    SMR描述 SMR(Shingled Magnetic Recording)叠瓦式磁记录盘是一种采用新型磁存储技术的高容量磁盘.SMR盘将盘片上的数据磁道部分重叠,就像屋顶上的瓦片一样,这种技术被称为 ...

  2. 企业上云这四大要点,你 get 了吗?

    本文由 Platform9(一家专注于云计算.专有云.混合云.OpenStack 以及容器技术的北美初创公司)技术产品营销经理 Akshai Parthasarathy 撰写,描述了企业在向云基础设施 ...

  3. 基于tensorflow实现mnist手写识别 (多层神经网络)

    标题党其实也不多,一个输入层,三个隐藏层,一个输出层 老样子先上代码 导入mnist的路径很长,现在还记不住 import tensorflow as tf import tensorflow.exa ...

  4. Centos7.2构建Python3.6开发环境

    1.安装python3.6 1.这里使用一台全新的腾讯云主机,首先获取linux系统版本信息. [root@VM_46_121_centos ~]# cat /etc/redhat-release C ...

  5. 爬虫_处理js动态加载

    1.selenium模块下载网页提取url,[煎蛋网] https://www.cnblogs.com/fat39/p/9865949.html#tag5 2.该网页加密了url,通过js获取图片.分 ...

  6. Scrum Meeting 10.23

    Scrum Meeting No.3 今天所完成的任务仍然停留在学习基础知识上.说实话,由于缺少安卓开发.web开发的经验,我们只能一步步摸索着来. 成员 已完成任务 下一阶段任务 徐越 阅读网上的博 ...

  7. 2018-2019-20172329 《Java软件结构与数据结构》第八周学习总结

    2018-2019-20172329 <Java软件结构与数据结构>第八周学习总结 现在对于我而言,最珍贵的是时间,感觉自己在时间飞逝的时候真的挽留不住什么,只能怒发冲冠的让自己疯狂的学习 ...

  8. JAVA学习IO(1)

    面向过程和面向对象的区别:面向过程:把问题分析成一个一个步骤组成的过程面向对象:从一个问题中分析出各个功能对象,并描述各个功能在整个解决问题的步骤的行为.面向对象的3大特征:封装,继承,多态封装:把多 ...

  9. Redis4.0模块子系统实现简述

    一.模块加载方法 1.在配置文件或者启动参数里面通过<loadmodule /path/to/mymodule.so args>指令加载 2.Redis启动后,通过<module l ...

  10. cobbler技术详解(是PXE二次详解)

    Cobbler是PXE的二次封装,使用Python语言开发, 可以用来快速建立 Linux 网络安装环境,它已将 Linux 网络安装的技术门槛,从大专以上文化水平,成功降低到初中以下,连补鞋匠都能学 ...