解题:WC 2007 石头剪刀布
要我们把边定向,最大化留下来的三元环数目......并不能直接做,考虑容斥,去掉不合法的数目。
那么三个点不成环当且仅当有一个点出度为2一个点入度为2,发现最终答案就是$C_n^3-\sum C_{outdeg}^2$,然后因为下凸函数和费用流相似的性质可以拆边费用流:
每个点向汇点连一坨流量为$1$费用为$0,1,2...$的边,然后再把每条边向连接的点连流量为$1$费用为$0$的边表示使得一个点出度加$1$,最后原点向每条边连流量为$1$费用为$0$的边
#include<queue>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,M=,inf=1e9;
int p[N],noww[*M],goal[*M],flow[*M],cost[*M];
int mflw[N],mcst[N],pren[N],pree[N],queu[N],degr[N];
int game[N][N],gamx[N],gamy[N],numb[N]; queue<int> qs;
int n,m,s,t,t1,t2,t3,t4,id,rd,cnt,num,ans;
void link(int f,int t,int v,int c)
{
noww[++cnt]=p[f],p[f]=cnt;
goal[cnt]=t,flow[cnt]=v,cost[cnt]=c;
noww[++cnt]=p[t],p[t]=cnt;
goal[cnt]=f,flow[cnt]=,cost[cnt]=-c;
}
void Init(int st,int ed)
{
memset(mflw,0x3f,sizeof mflw);
memset(mcst,0x3f,sizeof mcst);
memset(queu,,sizeof queu),pren[ed]=-;
qs.push(st),queu[st]=true,mcst[st]=;
}
bool SP(int st,int ed)
{
Init(st,ed);
while(!qs.empty())
{
int tn=qs.front();
qs.pop(),queu[tn]=false;
for(int i=p[tn],g;i;i=noww[i])
if(mcst[g=goal[i]]>mcst[tn]+cost[i]&&flow[i])
{
pree[g]=i,pren[g]=tn;
mcst[g]=mcst[tn]+cost[i];
mflw[g]=min(mflw[tn],flow[i]);
if(!queu[g]) qs.push(g),queu[g]=true;
}
}
return ~pren[ed];
}
void MCMF(int st,int ed)
{
while(SP(st,ed))
{
ans+=mflw[ed]*mcst[ed],id=ed;
while(id!=st)
{
flow[pree[id]]-=mflw[ed];
flow[pree[id]^]+=mflw[ed];
id=pren[id];
}
}
}
int main()
{
scanf("%d",&n),cnt=,s=n+,num=t=n+;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
scanf("%d",&game[i][j]);
if(game[i][j]==)
{
if(i<=j)
{
num++,gamx[num]=i,gamy[num]=j;
link(num,i,,),link(num,j,,);
numb[i]++,numb[j]++,link(s,num,,);
}
}
else degr[i]+=game[i][j];
}
for(int i=;i<=n;i++)
{
ans+=degr[i]*degr[i];
for(int j=;j<=numb[i];j++)
link(i,t,,*(degr[i]+j)-);
}
MCMF(s,t);
printf("%d\n",n*(n-)*(n-)/-(ans-n*(n-)/)/);
for(int i=t+;i<=num;i++)
{
int oppo,numx=gamx[i],numy=gamy[i];
for(int j=p[i];j;j=noww[j])
if(goal[j]!=s&&!flow[j])
{oppo=goal[j]; break;}
game[numx][numy]=oppo==numx;
game[numy][numx]=game[numx][numy]^;
}
for(int i=;i<=n;i++,puts(""))
for(int j=;j<=n;j++)
printf("%d ",game[i][j]);
return ;
}
解题:WC 2007 石头剪刀布的更多相关文章
- WC 2007 剪刀石头布
WC 2007 剪刀石头布 看到这个三元环的问题很容易可以考虑到求不合法的三元环的数量的最小值. 什么情况不合法?既然不合法,当且仅当三元环中有一个人赢了另外两个人.所以我们考虑对于一个人而言,如果她 ...
- 解题:SCOI 2007 蜥蜴
题面 拆点跑最大流 所有能跑出去的点连向汇点,容量为inf 原点连向所有初始有蜥蜴的点,容量为1 每根柱子拆成两个点“入口”和“出口”,入口向出口连容量为高度的边,出口向别的有高度的柱子的入口连容量为 ...
- 「WC 2007」剪刀石头布
题目链接 戳我 \(Solution\) 直接求很明显不太好求,于是考虑不构成剪刀石头布的情况. 我们现在假设一个人\(i\)赢了\(x\)场,那么就会有\(\frac{x*(x-1)}{2}\) 我 ...
- 解题:WC 2018 州区划分
题面 WC之前写的,补一补,但是基本就是学新知识了 首先可以枚举子集$3^n$转移,优化是额外记录每个集合选取的个数,然后按照选取个数从小到大转移.转移的时候先FWT成“点值”转移完了IFWT回去乘逆 ...
- BZOJ 4864: [BeiJing 2017 Wc]神秘物质 解题报告
4864: [BeiJing 2017 Wc]神秘物质 Description 21ZZ 年,冬. 小诚退休以后, 不知为何重新燃起了对物理学的兴趣. 他从研究所借了些实验仪器,整天研究各种微观粒子. ...
- 洛谷 P3620 [APIO/CTSC 2007]数据备份 解题报告
P3620 [APIO/CTSC 2007]数据备份 题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同 ...
- 解题:WC 2006 水管局长
题面 初见LCT,动态最小生成树+链上查询max,具体做法是把边转换成点(LCT只能维护点) 时光倒流,先把最后剩的连起来.然后查询就看链上最大值,修改看看链上最大值是否大于当前边,如果是就断开原来的 ...
- 解题:POI 2007 Tourist Attractions
题面 事实上这份代码在洛谷过不去,因为好像要用到一些压缩空间的技巧,我并不想(hui)写(捂脸) 先预处理$1$到$k+1$这些点之间相互的最短路和它们到终点的最短路,并记录下每个点能够转移到时的状态 ...
- 解题:APIO/CTSC 2007 数据备份
题面 用双向链表把相邻两项的差串起来,用大根堆维护价值,每次贪心取最大的$x$.取完之后打标记删掉$pre[x]$和$nxt[x]$,之后用$val[pre[x]]+val[nxt[x]]-val[x ...
随机推荐
- Classifier
1.视频:https://morvanzhou.github.io/tutorials/machine-learning/keras/2-2-classifier/ 2.敲了代码,但是运行结果不懂,明 ...
- Bing词典vs有道词典比对测试报告
功能篇 核心功能测评:http://www.cnblogs.com/C705/p/4075554.html 细节与用户体验:http://www.cnblogs.com/C705/p/4077112. ...
- BNUOJ 52305 Around the World 树形dp
题目链接: https://www.bnuoj.com/v3/problem_show.php?pid=52305 Around the World Time Limit: 20000msMemory ...
- C#设置代码只在调试模式下执行
获取一个值,它指示调试器是否已附加到进程. 命名空间:Namespace:System.Diagnostics if (Debugger.IsAttached) { Response.Write(&q ...
- 阅读 DPDK 中文论文两则
基于DPDK的高效数据包捕获技术分析与应用 本文应用场景 网络安全领域的数据包捕获技术,对系统有高性能需求,要在短时间内成功收集.分析.处理大量数据,实时捕获效率低下. 旧有传统数据包处理机制 BPF ...
- contos7忘记root密码怎么办
首先在这个界面按"e"键 然后呢就会进入到如下图所示的界面,在LANG=zh_CN.UTF8的后面加上 init=/bin/sh, 再按 [ Ctrl + X ] 进入'单用户模式 ...
- SCRUM:周日周一任务实现情况
1.设计.制作欢迎界面 2.对杰龙注册界面进行重设计和规范strings → → →
- 0422“数学口袋精灵”BUG发现
团队成员的博客园地址: 曾治业:http://www.cnblogs.com/zzy999/ 蔡彩虹:http://www.cnblogs.com/caicaihong/ 蓝叶:http://www. ...
- eclipse+IDEA快捷键记录
Eclipse中自动获取 IDEA中:ctrl+alt+v==alt+shift+l 其它 (有些地方前面的C代表Ctrl .S代表Shift.A代表Alt) Ctrl+Shift+F ...
- windows多线程(九) PV原语分析同步问题
一.PV原语介绍 PV原语通过操作信号量来处理进程间的同步与互斥的问题.其核心就是一段不可分割不可中断的程序. 信号量的概念1965年由著名的荷兰计算机科学家Dijkstra提出,其基本思路是用一种新 ...