我们可以通过列表生成式简单直接地创建一个列表,但是受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,而且如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器(Generator)。

要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

1
2
3
4
5
6
>>> mylist = [ x for in range(1, 10)]
>>> mylist
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> gen = (x for in range(1,10))
>>> gen
<generator object <genexpr> at 0x7f1d7fd0f5a0>

创建mylist和gen的区别仅在于最外层的[]和(),mylist是一个list,而gen是一个generator(生成器)。

我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?

如果要一个一个打印出来,可以通过generator的next()方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
>>> gen.next()
1
>>> gen.next()
2
>>> gen.next()
3
...
>>> gen.next()
9
>>> gen.next()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

我们讲过,generator保存的是算法,每次调用next(),就计算出下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。

其实我们可以使用for循环来代替next()方式, 这样才更符合高效的编程思路:

1
2
3
4
5
6
7
8
9
10
11
12
13
>>> gen = ( x for in range(1, 10))
>>> for num in gen:
...     print num
... 
1
2
3
4
5
6
7
8
9

generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

1
1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

1
2
3
4
5
6
7
def fib(max):
    = 0 
    a, b = 01
    while n < max:
        print b
        a, b = b, a + b
        = + 1

上面的函数可以输出斐波那契数列的前N个数:

1
2
3
4
5
6
7
>>> fib(6)
1
1
2
3
5
8

仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print b改为yield b就可以了:

1
2
3
4
5
6
7
def fib(max):
    = 0 
    a, b = 01
    while n < max:
        yield b
        a, b = b, a + b
        = + 1

这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:

1
2
>>> fib(6)
<generator object fib at 0x104feaaa0>

这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

举个简单的例子,定义一个generator,依次返回数字1,3,5:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
>>> def odd():
...     print 'step 1'
...     yield 1
...     print 'step 2'
...     yield 3
...     print 'step 3'
...     yield 5
...
>>> o = odd()
>>> o.next()
step 1
1
>>> o.next()
step 2
3
>>> o.next()
step 3
5
>>> o.next()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

可以看到,odd不是普通函数,而是generator,在执行过程中,遇到yield就中断,下次又继续执行。执行3次yield后,已经没有yield可以执行了,所以,第4次调用next()就报错。

回到fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。

同样的,把函数改成generator后,我们基本上从来不会用next()来调用它,而是直接使用for循环来迭代:

1
2
3
4
5
6
7
8
9
>>> for in fib(6):
...     print n
...
1
1
2
3
5
8

generator是非常强大的工具,在Python中,可以简单地把列表生成式改成generator,也可以通过函数实现复杂逻辑的generator。

要理解generator的工作原理,它是在for循环的过程中不断计算出下一个元素,并在适当的条件结束for循环。对于函数改成的generator来说,遇到return语句或者执行到函数体最后一行语句,就是结束generator的指令,for循环随之结束。

深入理解Python生成器(Generator)的更多相关文章

  1. python生成器(generator)、迭代器(iterator)、可迭代对象(iterable)区别

    三者联系 迭代器(iterator)是一个更抽象的概念,任何对象,如果它的类有next方法(next python3)和__iter__方法返回自己本身,即为迭代器 通常生成器是通过调用一个或多个yi ...

  2. 彻底理解 Python 生成器

    1. 生成器定义 在Python中,一边循环一边计算的机制,称为生成器:generator. 2. 为什么要有生成器 列表所有数据都在内存中,如果有海量数据的话将会非常耗内存. 如:仅仅需要访问前面几 ...

  3. 【Python注意事项】如何理解python中间generator functions和yield表情

    本篇记录自己的笔记Python的generator functions和yield理解表达式. 1. Generator Functions Python支持的generator functions语 ...

  4. Python 生成器 (generator) & 迭代器 (iterator)

    python 生成器 & 迭代器 生成器 (generator) 列表生成式 列表生成式用来生成一个列表,虽然写的是表达式,但是储存的是计算出来的结果,因此生成的列表受到内存大小的限制 示例: ...

  5. 【python之路29】python生成器generator与迭代器

    一.python生成器 python生成器原理: 只要函数中存在yield,则函数就变为生成器函数 #!usr/bin/env python # -*- coding:utf-8 -*- def xr ...

  6. python 生成器generator

    关于生成器,主要有以下几个 关键点的内容 一.什么是generator ,为什么要有generator? 二.两种创建生成器方式 三.yield关键字 四.generator 两个调用方法 next( ...

  7. Python 生成器 Generator 和迭代器 Iterator

    #最近一周刚开始接触python,基本的语法,和使用特性和Java差别还是蛮大的. 今天接触到Python的迭代器和生成器有点不是很明白,所以搜索了先关资料整理了一些自己的理解和心得 简述(Profi ...

  8. python 生成器 generator

    一.生成器定义 通过列表生成表达式,我们可以直接创建一个列表.但是,受到内存限制,列表容量肯定是有限的.所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢? ...

  9. python 生成器(generator)的生成方式

    generator包括生成器和带yield的generator函数. 写了一个生成杨辉三角的小例子: # -*- coding:utf-8 -*- def triangles(): l = [1] w ...

随机推荐

  1. Token报错问题

    解决token报错,CSRF令牌问题: <form method="POST" action=""> {{ csrf_field() }} < ...

  2. laravel new xxx 安装laravel 慢的问题

    问题:使用官方文档上安装 laravel laravel new xxx 安装速度奇慢无比,设置了composer 全局镜像也没有用 composer config -g repo.packagist ...

  3. python基础——python解析yaml类型文件

    一.yaml介绍 yaml全称Yet Another Markup Language(另一种标记语言).采用yaml作为配置文件,文件看起来直观.简洁.方便理解.yaml文件可以解析字典.列表和一些基 ...

  4. 字典树&&01字典树专题&&对字典树的理解

    对于字典树和01字典树的一点理解: 首先,字典树建树的过程就是按照每个数的前缀来的,如果你要存储一个全小写字母字符串,那么这个树每一个节点最多26个节点,这样的话,如果要找特定的单词的话,按照建树的方 ...

  5. sql的主键,int类型,自增,自动编号到了规定最大数,接下来数据库会怎么做

    答案:它会从1开始重新编号,但是避开已经重复的值.

  6. style一张图--openlayers

  7. python网络编程-Select\Poll\Epoll异步IO

    首先列一下,sellect.poll.epoll三者的区别 select select最早于1983年出现在4.2BSD中,它通过一个select()系统调用来监视多个文件描述符的数组,当select ...

  8. 强大的vi的几个功能

    1 拷贝第十行到第十三行到文件a中,不用!亦可 : 比如你要拷贝从第10行到第109行到文件123.txt中,可以用以下的命令:10,109w!123.txt

  9. UFLDL 教程学习笔记(三)

    教程地址:http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/ logstic regression是二分类的问题,如果想要 ...

  10. 通过field:global给子元素添加css样式

    {dede:arclist row=5 typeid=200} <li [field:global runphp=’yes’ name=autoindex](@me==1)?@me=”class ...