luoguP3507 [POI2010]GRA 性质 + 动态规划
题目大意:
给定\(n\)个正整数,\(a, b\)两个人轮流取,\(a\)先手
每次可以取任意多的数,直到取完,每次的得分为取的数中的最小值
\(a, b\)都会使自己的得分减去对手的得分更大,询问最后\(a\)的得分减去\(b\)的得分的大小
先考虑排序
排完序之后,先手一定取连续的一段
如果不取完,那么后手有更多的选择空间(可以选择大数或者带着大数选前面的区间)
设\(f[i]\)表示\(1 \sim i\)中先手取比后手取多的最大值
那么有\(f[i] = max(-f[j] + a[j + 1])\)
然后随意优化下就是\(O(n)\)啦
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define ll long long
#define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --)
#define gc getchar
inline int read() {
int p = 0, w = 1; char c = gc();
while(c > '9' || c < '0') { if(c == '-') w = -1; c = gc(); }
while(c >= '0' && c <= '9') p = p * 10 + c - '0', c = gc();
return p * w;
}
const int sid = 1e6 + 5;
int n;
ll f[sid];
int a[sid];
int main() {
n = read();
rep(i, 1, n) a[i] = read();
sort(a + 1, a + n + 1);
ll mx = a[1];
rep(i, 1, n) {
f[i] = mx;
mx = max(mx, -f[i] + a[i + 1]);
}
printf("%lld\n", f[n]);
return 0;
}
luoguP3507 [POI2010]GRA 性质 + 动态规划的更多相关文章
- 【BZOJ2090/2089】[Poi2010]Monotonicity 2 动态规划+线段树
[BZOJ2090/2089][Poi2010]Monotonicity Description 给出N个正整数a[1..N],再给出K个关系符号(>.<或=)s[1..k].选出一个长度 ...
- CodeForces 1070J Streets and Avenues in Berhattan 性质+动态规划
题目大意: 你有$k$个数,分为$26$种 对于每个数,你可以选择选进$A$集合或者$B$集合或者不选 要求$A$集合中必须有$n$个数,$B$集合中必须有$m$个数 记第$i$种数在$A$集合中的个 ...
- [algorithm]求最长公共子序列问题
最直白方法:时间复杂度是O(n3), 空间复杂度是常数 reference:http://blog.csdn.net/monkeyandy/article/details/7957263 /** ** ...
- NOIP2017 国庆郑州集训知识梳理汇总
第一天 基础算法&&数学 day1难度测试 如果要用一个词来形容上午的测试,那真是体无完肤. 成绩: 题目 成绩 评价 T1 50 一般 T2 10 大失所望 T3 0 差 基础算法 ...
- 【BZOJ1925】 [SDOI2010] 地精部落(带有一堆性质的动态规划)
点此看题面 大致题意: 问你有多少长度为\(n\)的数列,它当中每个数字要么比旁边两个数字都小,要么比旁边两个数字都大. 性质 这题应该比较显然是一道动态规划题,但刚看到这题时我却无从下手. 其实,了 ...
- [bzoj2091][Poi2010]The Minima Game_动态规划
The Minima Game bzoj-2091 Poi-2010 题目大意:给出N个正整数,AB两个人轮流取数,A先取.每次可以取任意多个数,直到N个数都被取走.每次获得的得分为取的数中的最小值, ...
- leetcode_935. Knight Dialer_动态规划_矩阵快速幂
https://leetcode.com/problems/knight-dialer/ 在如下图的拨号键盘上,初始在键盘中任意位置,按照国际象棋中骑士(中国象棋中马)的走法走N-1步,能拨出多少种不 ...
- 动态规划之最长公共子序列(LCS)
转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...
- 动态规划(DP)
一.基本概念 动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移.一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划. 二.基本思想与策略 基本 ...
随机推荐
- Ubuntu 通过 Live CD 更新grub恢复引导Boot Menu
工作需要更换主板,但是不想重装电脑. 怎么办呢? 其实并不需要重装电脑,只需要回复boot menu即可. 1. 首先用u盘制作一个ubuntu的live CD(请自行百度),然后通过u盘启动, 选择 ...
- UNIX环境高级编程 第14章 高级I/O
这一章涉及很多概念和函数,包括:非阻塞I/O.记录锁.I/O复用.异步I/O.readv和writev函数以及内存映射. 非阻塞I/O 在Unix中,可以将系统调用分为两种,一种是“低速”系统调用,另 ...
- 【Tomcat】Tomcat配置与优化(内存、并发、管理)【自己配置】
一.JVM内存配置优化 主要通过以下的几个jvm参数来设置堆内存的: -Xmx512m 最大总堆内存,一般设置为物理内存的1/4 -Xms512m 初始总堆内存,一般将它设置的和最大堆内存一样大,这样 ...
- Maven仓库国内镜像站
感谢阿里巴巴,搭建并公开了Maven仓库的国内镜像站.话外:使用Maven的官方仓库真的是太slow了! 在<Maven Root>/conf/settings.xml中的<mirr ...
- 源码安装postgresql数据库
一般情况下,postgresql由非root用户启动. 1.创建postgres用户 groupadd postgres useradd -g postgres postgres 下面的操作都在pos ...
- 阿里云slb+https 实践操作练习
如果只是练习按照文档步骤逐步执行即可. 如果是业务需要,只供参考. 有道笔记链接->
- 十二、springcloud之展示追踪数据 Sleuth+zipkin
一.Zipkin简介 Zipkin是Twitter的一个开源项目,它基于Google Dapper实现.我们可以使用它来收集各个服务器上请求链路的跟踪数据,并通过它提供的REST API接口来辅助我们 ...
- git内部原理
Git 内部原理 无论是从之前的章节直接跳到本章,还是读完了其余章节一直到这——你都将在本章见识到 Git 的内部工作原理 和实现方式. 我们发现学习这部分内容对于理解 Git 的用途和强大至关重要. ...
- 组合比较符(PHP7+)
php7+支持组合比较符,即<=>,英文叫做combined comparison operator,组合比较运算符可以轻松实现两个变量的比较,当然不仅限于数值类数据的比较. 语法:$a& ...
- 简易博客[ html + css ] 练习
1. 前言 通过使用 html + css 编写一个简易的博客作为入门练习 2. 代码及实现 2.1 目录结构 2.2 代码部分 <!DOCTYPE html> <html lang ...