luoguP3507 [POI2010]GRA 性质 + 动态规划
题目大意:
给定\(n\)个正整数,\(a, b\)两个人轮流取,\(a\)先手
每次可以取任意多的数,直到取完,每次的得分为取的数中的最小值
\(a, b\)都会使自己的得分减去对手的得分更大,询问最后\(a\)的得分减去\(b\)的得分的大小
先考虑排序
排完序之后,先手一定取连续的一段
如果不取完,那么后手有更多的选择空间(可以选择大数或者带着大数选前面的区间)
设\(f[i]\)表示\(1 \sim i\)中先手取比后手取多的最大值
那么有\(f[i] = max(-f[j] + a[j + 1])\)
然后随意优化下就是\(O(n)\)啦
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define ll long long
#define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --)
#define gc getchar
inline int read() {
int p = 0, w = 1; char c = gc();
while(c > '9' || c < '0') { if(c == '-') w = -1; c = gc(); }
while(c >= '0' && c <= '9') p = p * 10 + c - '0', c = gc();
return p * w;
}
const int sid = 1e6 + 5;
int n;
ll f[sid];
int a[sid];
int main() {
n = read();
rep(i, 1, n) a[i] = read();
sort(a + 1, a + n + 1);
ll mx = a[1];
rep(i, 1, n) {
f[i] = mx;
mx = max(mx, -f[i] + a[i + 1]);
}
printf("%lld\n", f[n]);
return 0;
}
luoguP3507 [POI2010]GRA 性质 + 动态规划的更多相关文章
- 【BZOJ2090/2089】[Poi2010]Monotonicity 2 动态规划+线段树
[BZOJ2090/2089][Poi2010]Monotonicity Description 给出N个正整数a[1..N],再给出K个关系符号(>.<或=)s[1..k].选出一个长度 ...
- CodeForces 1070J Streets and Avenues in Berhattan 性质+动态规划
题目大意: 你有$k$个数,分为$26$种 对于每个数,你可以选择选进$A$集合或者$B$集合或者不选 要求$A$集合中必须有$n$个数,$B$集合中必须有$m$个数 记第$i$种数在$A$集合中的个 ...
- [algorithm]求最长公共子序列问题
最直白方法:时间复杂度是O(n3), 空间复杂度是常数 reference:http://blog.csdn.net/monkeyandy/article/details/7957263 /** ** ...
- NOIP2017 国庆郑州集训知识梳理汇总
第一天 基础算法&&数学 day1难度测试 如果要用一个词来形容上午的测试,那真是体无完肤. 成绩: 题目 成绩 评价 T1 50 一般 T2 10 大失所望 T3 0 差 基础算法 ...
- 【BZOJ1925】 [SDOI2010] 地精部落(带有一堆性质的动态规划)
点此看题面 大致题意: 问你有多少长度为\(n\)的数列,它当中每个数字要么比旁边两个数字都小,要么比旁边两个数字都大. 性质 这题应该比较显然是一道动态规划题,但刚看到这题时我却无从下手. 其实,了 ...
- [bzoj2091][Poi2010]The Minima Game_动态规划
The Minima Game bzoj-2091 Poi-2010 题目大意:给出N个正整数,AB两个人轮流取数,A先取.每次可以取任意多个数,直到N个数都被取走.每次获得的得分为取的数中的最小值, ...
- leetcode_935. Knight Dialer_动态规划_矩阵快速幂
https://leetcode.com/problems/knight-dialer/ 在如下图的拨号键盘上,初始在键盘中任意位置,按照国际象棋中骑士(中国象棋中马)的走法走N-1步,能拨出多少种不 ...
- 动态规划之最长公共子序列(LCS)
转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...
- 动态规划(DP)
一.基本概念 动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移.一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划. 二.基本思想与策略 基本 ...
随机推荐
- 9、StringBuffer和StringBuilder
StringBuffer简介 StringBuffer是一个字符串缓冲区,如果需要频繁的对字符串进行拼接时,建议使用StringBuffer.工作原理StringBuffer的底层是char数组,如果 ...
- ES6的优雅方法
1.箭头函数 // ES5 var selected = allJobs.filter(function (job) { return job.isSelected(); }); // ES6 var ...
- ubuntu的PPA
PPA,表示Personal Package Archives,也就是个人软件包集很多软件包由于各种原因吧,不能进入官方的Ubuntu软件仓库.为了方便Ubuntu用户使用,launchpad.net ...
- CentOS7最小化安装之后无法联网以及无法使用ifconfig以及无法使用yum安装软件
无法联网解决办法,CentOS-7默认网卡未激活,进入BOOS设置修改,或者直接修改配置文件,然后重启服务 1 修改网卡配置文件: 激活: 2 重启服务即可: service network rest ...
- java创建并配置多module的maven项目
1 使用idea创建(推荐) 这篇博客写的特别好,很详细: https://blog.csdn.net/sinat_30160727/article/details/78109769 2 使用ecli ...
- mysql -> 启动&多实例_03
常用的连接方式: 套接字: mysql -uroot -p123 -S /application/mysql/tmp/mysql.sock Tcp/Ip: mysql -uroot -p123 -h ...
- ARKit从入门到精通
ARKit从入门到精通(10)-ARKit让飞机绕着你飞起来 ARKit从入门到精通(9)-ARKit让飞机跟着镜头飞起来 ARKit从入门到精通(8)-ARKit捕捉平地 ARKit从入门到精通(7 ...
- js权威指南---学习笔记02
1.JS只有函数作用域,没有块级作用域这个概念: 它有一个特性——声明提前:在同一个函数中不同位置声明的变量,都被提前在函数开始的时候,执行声明操作:在原先位置执行赋值操作: 2.声明的全局变量,相当 ...
- KVM virsh常用命令篇
1.查看运行的虚拟机 virsh list 2.查看所有的虚拟机(关闭和运行的虚拟机) virsh list --all 3.连接虚拟机 virsh console +域名(虚拟机的名称) 4.退出虚 ...
- 洛谷P2149 Elaxia的路线
传送门啦 分析: 我最开始想的是跑两遍最短路,然后记录一下最短路走了哪些边(如果有两条最短路就选经过边多的),打上标记.两边之后找两次都标记的边有多少就行了. 但...我并没有实现出来. 最后让我们看 ...