[Arc079F] Namori Grundy

题目大意:

一个有向弱联通环套树。

一个点的sg值等于出边连向点的sg值的mex。

试问是否有办法给每个点分配sg值?

试题分析

题目大意把一些难点跳过了??!

既然是sg值,那么考虑只有一个环的情况。

也就是说这个环必须由0、1构成,并且相邻两个不同,所以是二分图染色。。

那么显然奇环不行而偶环可以。

发现基环外向树上的那些树我们可以的sg值我们可以直接搞出来,那么我们现在可以获得环上每一个点的sg值的下界,下面就是进行调整了。

当所有点下界相同时,显然就是上面我们说过的情况。

不同我们就分情况讨论:

  • \(a_{i-1}<a_{i}\) 不需要调整
  • \(a_{i-1}=a_{i}\)调整为+1
  • \(a_{i-1}>a_{i}\)依旧不需要调整。

这个过程能否停住是我们判断的标准。

显然若干次以后一定可以停住。

那么不合法的情况显然只有一种:奇环+下界相同。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<algorithm>
//#include<ctime>
//#include<cmath>
//#include<queue> using namespace std;
#define LL long long inline int read(){
int x=0,f=1; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
const int INF = 2147483600;
const int MAXN = 400010; int N; int f[MAXN+1];
bool vis[MAXN+1]; int cir[MAXN+1],sta[MAXN+1];
int topx,top; int Next[MAXN<<1],Node[MAXN<<1],Root[MAXN<<1],cnt; inline void insert(int u,int v){
Node[++cnt]=v; Next[cnt]=Root[u]; Root[u]=cnt; return;
} bool flag=false;
inline void Get_Cir(int k){
if(flag) return ; cir[++topx]=k; vis[k]=true;
for(LL x=Root[k];x;x=Next[x]){
LL v=Node[x]; if(flag) return ;
if(vis[v]){
for(LL j=topx;j>=1&&cir[j]!=v;j--) sta[++top]=cir[j];
sta[++top]=v; flag=true; return ;
} else Get_Cir(v);
} --topx; vis[k]=0; return ;
}
vector<int> vec[MAXN+1];
inline int Get_slope(int k){
vec[k].push_back(-1);
for(int x=Root[k];x;x=Next[x]){
int v=Node[x]; if(vis[v]) continue;
vec[k].push_back(Get_slope(v));
} sort(vec[k].begin(),vec[k].end()); vec[k].push_back(INF);
for(int i=0;i<vec[k].size();i++){
if(vec[k][i]+1!=vec[k][i+1]){
return vec[k][i]+1;
}
}
}
int col[MAXN+1];
inline bool state(){
for(int i=1;i<=top;i++) if(col[i]!=col[1]) return false;
return true;
} int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
N=read(); int x=N;
for(int i=1;i<=N;i++) f[i]=read(),insert(f[i],i);
for(int i=1;i<=N&&!flag;i++) Get_Cir(i); memset(vis,false,sizeof(vis));
if(!(top&1)){puts("POSSIBLE"); return 0;}
for(int i=1;i<=top;i++) vis[sta[i]]=1;
for(int i=1;i<=top;i++) col[i]=Get_slope(sta[i]);
puts(((top&1)&&state())?"IMPOSSIBLE":"POSSIBLE");
return 0;
}

[Arc079F] Namori Grundy的更多相关文章

  1. [arc079f] Namori Grundy 分类讨论

    Description 给给全有一个NN个点NN条边的有向图,点的的编号从11到NN 给给全的图有NN条边,形如:(p1,1),(p2,2),...,(pN,N)(p1,1),(p2,2),...,( ...

  2. 【ARC079F】Namori Grundy

    Description 题目链接 大意:给一张基环外向树.要求给每一个点确定一个值,其值为所有后继点的\(\text{mex}\).求是否存在确定权值方案. Solution 首先,对于叶子节点,其权 ...

  3. 【构造】AtCoder Regular Contest 079 F - Namori Grundy

    对每个点的取值都取最小的可能值. 那个图最多一个环,非环的点的取值很容易唯一确定. 对于环上的点v,其最小可能取值要么是mex{c1,c2,...,ck}(ci这些是v直接相连的非环点)(mex是). ...

  4. AT2663 Namori Grundy

    题目描述: luogu 题解: 好多细节,比如说每个点有且仅有一条入边. 所以说这个图一定是一个基环外向树. 考虑只是一个环的情况,我们可以发现,当环长为偶数时我们可以$01$交替染色,但环长为奇数时 ...

  5. 【agc004f】Namori Grundy

    那个问一下有人可以解释以下这个做法嘛,看不太懂QwQ~ Description 有一个n个点n条边的有向图,点的编号为从1到n. 给出一个数组p,表明有(p1,1),(p2,2),…,(pn,n)这n ...

  6. NOIp模拟赛三十一

    持续降智 分数:100+0+0=100 C题subtask是假的,根本没有部分分中的情况...还我20分QAQ A:[BZOJ4444]国旗计划 B:[agc006f]blackout C:[arc0 ...

  7. AtCoder刷题记录

    构造题都是神仙题 /kk ARC066C Addition and Subtraction Hard 首先要发现两个性质: 加号右边不会有括号:显然,有括号也可以被删去,答案不变. \(op_i\)和 ...

  8. AtCoder瞎做第二弹

    ARC 067 F - Yakiniku Restaurants 题意 \(n\) 家饭店,\(m\) 张餐票,第 \(i\) 家和第 \(i+1\) 家饭店之间的距离是 \(A_i\) ,在第 \( ...

  9. 【AtCoder】ARC079

    ARC079题解 C - Cat Snuke and a Voyage #include <bits/stdc++.h> #define fi first #define se secon ...

随机推荐

  1. 用Nginx分流绕开Github反爬机制

    用Nginx分流绕开Github反爬机制 0x00 前言 如果哪天有hacker进入到了公司内网为所欲为,你一定激动地以为这是一次蓄谋已久的APT,事实上,还有可能只是某位粗线条的员工把VPN信息泄露 ...

  2. SQL自定义排序 ORDER BY

    将id为30002 排在最前面 50第二 其他 不变 SELECT TOP 10 * FROM [表名] t1 ORDER BY case t1.ID when 30002 then 0 WHEN 5 ...

  3. linux文件管理 -> 系统压缩打包

    如果希望windows和Linux互相能使用的压缩工具, 建议.zip格式 压缩的好处主要有: 节省磁盘空间占用率 节省网络传输带宽消耗 网络传输更加快捷 Linux系统常见的后缀名所对应的压缩工具 ...

  4. JS判断是否是PC端访问网站

    function IsPC() { var userAgentInfo = navigator.userAgent; var Agents = ["Android", " ...

  5. HTTP Headers解析

    什么是HTTP Headers? 它包含了哪些内容? 利用requests.get()函数对豆瓣读书进行请求, 返回的r.headers如下所示: >>> import reques ...

  6. JavaScript 中的回调函数

    原文:http://javascriptissexy.com/ 翻译:http://blog.csdn.net/luoweifu/article/details/41466537 [建议阅读原文,以下 ...

  7. django(2)基本指令

    打开 Linux 或 MacOS 的 Terminal (终端)直接在 终端中输入这些命令(不是 python 的 shell中) 如果是 windows 用 cmd(开始 搜索 cmd 或者 快捷键 ...

  8. Vue select 下拉菜单

    1.html <div id="app-8"> <select v-model="selected"> <option v-for ...

  9. 题解-python-CodeForces 227A

    codeforces题目,用python写 本题输入三个点坐标,考察叉积,若大于0则right,小于0则left,等于0则towards 代码: a = raw_input().split() b = ...

  10. maven:missing artifact jdk.tools:jar:1.7

    http://stackoverflow.com/questions/11118070/buiding-hadoop-with-eclipse-maven-missing-artifact-jdk-t ...