2018.06.29 洛谷P2890 [USACO07OPEN]便宜的回文(简单dp)
P2890 [USACO07OPEN]便宜的回文Cheapest Palindrome
时空限制 1000ms / 128MB
题目描述
Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate it. He has installed on each cow an electronic ID tag that the system will read as the cows pass by a scanner. Each ID tag’s contents are currently a single string with length M (1 ≤ M ≤ 2,000) characters drawn from an alphabet of N (1 ≤ N ≤ 26) different symbols (namely, the lower-case roman alphabet).
Cows, being the mischievous creatures they are, sometimes try to spoof the system by walking backwards. While a cow whose ID is “abcba” would read the same no matter which direction the she walks, a cow with the ID “abcb” can potentially register as two different IDs (“abcb” and “bcba”).
FJ would like to change the cows’s ID tags so they read the same no matter which direction the cow walks by. For example, “abcb” can be changed by adding “a” at the end to form “abcba” so that the ID is palindromic (reads the same forwards and backwards). Some other ways to change the ID to be palindromic are include adding the three letters “bcb” to the begining to yield the ID “bcbabcb” or removing the letter “a” to yield the ID “bcb”. One can add or remove characters at any location in the string yielding a string longer or shorter than the original string.
Unfortunately as the ID tags are electronic, each character insertion or deletion has a cost (0 ≤ cost ≤ 10,000) which varies depending on exactly which character value to be added or deleted. Given the content of a cow’s ID tag and the cost of inserting or deleting each of the alphabet’s characters, find the minimum cost to change the ID tag so it satisfies FJ’s requirements. An empty ID tag is considered to satisfy the requirements of reading the same forward and backward. Only letters with associated costs can be added to a string.
输入输出格式
输入格式:
Line 1: Two space-separated integers: N and M
Line 2: This line contains exactly M characters which constitute the initial ID string
Lines 3..N+2: Each line contains three space-separated entities: a character of the input alphabet and two integers which are respectively the cost of adding and deleting that character.
输出格式:
Line 1: A single line with a single integer that is the minimum cost to change the given name tag.
输入输出样例
输入样例#1:
3 4
abcb
a 1000 1100
b 350 700
c 200 800
输出样例#1:
900
说明
If we insert an “a” on the end to get “abcba”, the cost would be 1000. If we delete the “a” on the beginning to get “bcb”, the cost would be 1100. If we insert “bcb” at the begining of the string, the cost would be 350 + 200 + 350 = 900, which is the minimum.
题意简述:字串S" role="presentation" style="position: relative;">SS长M" role="presentation" style="position: relative;">MM,由N" role="presentation" style="position: relative;">NN个小写字母构成。欲通过增删字母将其变为回文串,增删特定字母花费不同,求最小花费。
Solution
此题有简单的状态转移方程;
设字符串为 s[1,m]" role="presentation" style="position: relative;">s[1,m]s[1,m],删除某字符的价格为 val[k−′a′]" role="presentation" style="position: relative;">val[k−′a′]val[k−′a′];
最关键的一点在于,如果 s[i+1,j]" role="presentation" style="position: relative;">s[i+1,j]s[i+1,j] 已经是回文,那么删除掉 s[i]" role="presentation" style="position: relative;">s[i]s[i] 与在 s[j,j+1]" role="presentation" style="position: relative;">s[j,j+1]s[j,j+1] 中间插入 s[i]" role="presentation" style="position: relative;">s[i]s[i] 两个操作是等价的,即 val[k−′a′]=min{insert[k],delete[k]}" role="presentation" style="position: relative;">val[k−′a′]=min{insert[k],delete[k]}val[k−′a′]=min{insert[k],delete[k]};
并定义状态f[i,j]表示将s[i,j]变成回文字符串的最小代价
则不难发现:f[i,i]=0;
若s[i]==s[i+1],那么有f[i,j]=0;
对于已经求出值的f[i,j]
如果s[i-1]==s[j+1],那么显然有f[i-1][j+1]=min(f[i-1][j+1],f[i][j]);
dp[i-1][j]=min(dp[i-1][j],dp[i][j]+val[s[i-1]-‘a’]);
dp[i][j+1]=min(dp[i][j+1],dp[i][j]+val[s[j+1]-‘a’]);
下面给出代码
#include<iostream>
#include<bits/stdc++.h>
using namespace std;
char s[2010];
int n,m,dp[3010][3010],val[3010];
int main(){
scanf("%d %d %s",&n,&m,s+1);
int a,b;
char k[3];f
for(int i=1;i<=n;++i){
scanf("%s%d%d",k,&a,&b);
val[k[0]-'a']=min(a,b);
}
memset(dp,0x3f,sizeof(dp));
for(int i=1;i<=m;++i){
dp[i][i]=0;
if(s[i]==s[i+1])dp[i][i+1]=0;
}
for(int l=0;l<=m;++l)
for(int i=1;i<=m;++i){
int j=i+l;
a=s[i-1]-'a';
b=s[j+1]-'a';
if(a==b)dp[i-1][j+1]=min(dp[i-1][j+1],dp[i][j]); //玄学
dp[i-1][j]=min(dp[i-1][j],dp[i][j]+val[s[i-1]-'a']);//D P
dp[i][j+1]=min(dp[i][j+1],dp[i][j]+val[s[j+1]-'a']);//方程
}
printf("%d",dp[1][m]);
return 0;
}
2018.06.29 洛谷P2890 [USACO07OPEN]便宜的回文(简单dp)的更多相关文章
- 洛谷P2890 [USACO07OPEN]便宜的回文Cheapest Palindrome
题目链接: 点我 题目分析: 玄学\(dp\) 设\(val[s[i] - 'a' + 1]\)表示字母\(s[i]\)的花费 首先发现对于一个已经回文了的串\(s[i, j]\),在\(s[i - ...
- 洛谷 2890 [USACO07OPEN]便宜的回文Cheapest Palindrome
传送门 一道最简单的区间dp,然而我还是抄了题解. //Twenty #include<algorithm> #include<iostream> #include<cs ...
- 2018.06.29 洛谷P1505 [国家集训队]旅游(树链剖分)
旅游 题目描述 Ray 乐忠于旅游,这次他来到了T 城.T 城是一个水上城市,一共有 N 个景点,有些景点之间会用一座桥连接.为了方便游客到达每个景点但又为了节约成本,T 城的任意两个景点之间有且只有 ...
- [DP]P2890 [USACO07OPEN]便宜的回文Cheapest Palindrome
题目翻译(借鉴自@ 神犇的蒟蒻) [问题描述] 追踪每头奶牛的去向是一件棘手的任务,为此农夫约翰安装了一套自动系统.他在每头牛身 上安装了一个电子身份标签,当奶牛通过扫描器的时候,系统可以读取奶牛的身 ...
- [洛谷] P2010 [NOIP2016 普及组] 回文日期
点击查看代码 #include<bits/stdc++.h> using namespace std; int data1, data2, ans = 0, sum; int d[13] ...
- 2018.10.29 洛谷P4129 [SHOI2006]仙人掌(仙人掌+高精度)
传送门 显然求出每一个环的大小. Ans=∏i(siz[i]+1)Ans=\prod_i(siz[i]+1)Ans=∏i(siz[i]+1) 注意用高精度存答案. 代码: #include<b ...
- 2018.09.26洛谷P3957 跳房子(二分+单调队列优化dp)
传送门 表示去年考普及组的时候失了智,现在看来并不是很难啊. 直接二分答案然后单调队列优化dp检验就行了. 注意入队和出队的条件. 代码: #include<bits/stdc++.h> ...
- 2018.08.16 洛谷P1437 [HNOI2004]敲砖块(二维dp)
传送门 看起来普通dp" role="presentation" style="position: relative;">dpdp像是有后效性的 ...
- 2018.07.22 洛谷P2986 伟大的奶牛聚集(树形dp)
传送门 给出一棵树,树有边权和点权,若选定一个点作为中心,这棵树的代价是所有点权乘上到根的距离的和.求代价最小. 解法:一道明显的换根dp" role="presentation& ...
随机推荐
- VBA 语句集400句
定制模块行为(1) Option Explicit '强制对模块内所有变量进行声明 Option Private Module '标记模块为私有,仅对同一工程中其它模块有用,在宏对话框中不显示 ...
- 多线程--Java
多线程: 1.进程和线程 进程是资源分配的最小单位,线程是CPU调度的最小单位. 每个进程的创建都需要系统为其开辟资源内存空间,并发执行的程序在执行过程中分配和管理资源的基本单位,速度和销毁也较慢.进 ...
- WDA-BOPF业务对象处理框架
SAP中的BOPF(Business Object Processing Framework) 正文 希望简化你的业务应用开发过程?业务对象处理框架(Business Object Processin ...
- Web Deploy
Web Deploy 服务器安装设置与使用 Win2008R2配置WebDeploy Visual Studio 使用Web Deploy发布项目
- jquery实现背景图片动态适应
背景 在我的一个项目中用到了背景图片,发现其中有一个问题,当页面长度动态变化时,原来能占满全部内容背景的图片会变得不能占满全部背景.如下图的效果: 这是正常的,背景图片占满全屏 当页面内容变长出现了滚 ...
- sysbench相关
Sysbench工具是集系统测试和数据库测试一体的测试工具,但是传统的sysbench在数据库测试方面,没有遵循TPC-C测试模型,仅仅支持单个表的数据.而在实际的业务场景中,业务逻辑复杂的多.开源的 ...
- inotify用法简介及结合rsync实现主机间的文件实时同步
一.inotify简介 inotify是Linux内核2.6.13 (June 18, 2005)版本新增的一个子系统(API),它提供了一种监控文件系统(基于inode的)事件的机制,可以监控文件系 ...
- substring_index 用法
substring_index http://blog.csdn.net/wolinxuebin/article/details/7845917 1.substring_index(str,delim ...
- PCA原理(转)
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降 ...
- Dynomite 安装配置
Dynomite受Dynamo白皮书的启发,是一种用于不同存储引擎和协议的轻量级的分布式的Dynamo层. 目前包括Redis和Memcached. Dynomite支持多数据中心复制,旨在实现高可用 ...