UVA.12716 GCD XOR (暴力枚举 数论GCD)

题意分析

题意比较简单,求[1,n]范围内的整数队a,b(a<=b)的个数,使得 gcd(a,b) = a XOR b.

前置技能

XOR的性质

GCD

由于题目只给出一个n,我们要求对数,能做的也始终暴力枚举a,b,这样就有n^2的复杂度,由于n很大,根本过不了。

于是我们就想用到其中一些性质,如XOR 与GCD,不妨假设 a xor b = c,并且根据题意还知道, gcd(a,b) = c,也就说明c一定是a的因子,所以在枚举的时候,可以转过头来枚举a和c.那么如何求出当前情况下的b呢,考虑到xor的性质,即 a xor b = c, a xor c = a xor a xor b = b. 通过异或运算就可以求解出来b,然后再检验gcd(a,b)是否为c即可。

到这里其实已经足够了,但是打出一定规模符合题意的(a,b,c),不难发现,a-b=c,有了这条性质,就可以不用gcd检验了。换句话说,通过枚举a,c,b = a-c计算出b,通过a^b=c检验是否符合条件。因为相对而言,位运算比gcd快得多。

值得一提的是,由于n很大,连续处理多个n很大的值的时候,速度表现不能令人满意,最先想到的办法就是打表方法。

代码总览

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#define nmax 30000010
#define ll long long
using namespace std;
int n;
int t;
int num[nmax]; void init(){
for(int c = 1;c<=(nmax+1)/2;++c){
for(int a = c+c;a<nmax;a+=c){
int b = a-c;
if((a^b) == c) num[a]++;
}
}
for(int i = 2;i<nmax;++i) num[i]+=num[i-1];
} int main()
{
int kase =1 ;
init();
scanf("%d",&t);
for(kase = 1; kase <=t;++kase){
scanf("%d",&n);
printf("Case %d: %d\n",kase,num[n]);
}
return 0;
}

UVA.12716 GCD XOR (暴力枚举 数论GCD)的更多相关文章

  1. Uva 10167 - Birthday Cake 暴力枚举 随机

      Problem G. Birthday Cake Background Lucy and Lily are twins. Today is their birthday. Mother buys ...

  2. UVA 725 division【暴力枚举】

    [题意]:输入正整数n,用0~9这10个数字不重复组成两个五位数abcde和fghij,使得abcde/fghij的商为n,按顺序输出所有结果.如果没有找到则输出“There are no solut ...

  3. UVa 10603 Fill [暴力枚举、路径搜索]

    10603 Fill There are three jugs with a volume of a, b and c liters. (a, b, and c are positive intege ...

  4. UVA 12716 GCD XOR(数论+枚举+打表)

     题意:给你一个N,让你求有多少组A,B,  满足1<= B <= A <= N, 且 gcd(A,B) = A XOR B. 思路:首先我们能够得出两个结论: A-B > ...

  5. GCD XOR UVA 12716 找规律 给定一个n,找多少对(a,b)满足1<=b<=a<=n,gcd(a,b)=a^b;

    /** 题目:GCD XOR UVA 12716 链接:https://vjudge.net/problem/UVA-12716 题意:给定一个n,找多少对(a,b)满足1<=b<=a&l ...

  6. uval 6657 GCD XOR

    GCD XORGiven an integer N, nd how many pairs (A; B) are there such that: gcd(A; B) = A xor B where1 ...

  7. [NOIP2009] $Hankson$ 的趣味题 (数论,gcd)

    题目链接 Solution 此题,用到的结论都是比较浅显的,但是,我竟然没想到反过来枚举... 只有50分... 被自己蠢哭... 结论比较浅显: 1.对于两个正整数\(a\),\(b\),设 \(g ...

  8. 题解 UVA12716 GCD等于XOR GCD XOR

    规律题,打表找规律即可发现 a xor b >= a - b >= gcd(a, b), 如果 a xor b = gcd(a, b) = c 则 c = a - b 枚举倍数c和a判断b ...

  9. GCD XOR uvalive6657

    GCD XORGiven an integer N, nd how many pairs (A; B) are there such that: gcd(A; B) = A xor B where1 ...

随机推荐

  1. python—索引与切片总结

    python中索引与切片的熟练掌握对于字符串的操作很有帮助,梳理如下: (1)索引 S = 'hello world' 1)正向索引 正向索引从0开始,向右依次递增. 2)反向索引 反向索引从-1开始 ...

  2. Kubernetes探索学习005--Kubernetes的Controller模型和ReplicaSet伸缩

    1.Kubernetes的controller pattern 需要认识到Kubernetes操作Pod的逻辑,都是由控制器来完成的. 查看之前写过的nginx-deployment的YAML文件 [ ...

  3. OGG 问题

    1.启动复制时报 "ERROR OGG-15050 Oracle GoldenGate Delivery, l***.prm: Error loading Java VM runtime l ...

  4. kafka启动报错:另一个程序正在使用此文件,进程无法访问。

    在Windows上启动kafka_2.12-1.1.0报以下错误:[2018-05-08 10:24:51,777] ERROR Failed to clean up log for __consum ...

  5. java把map转json

    JSONUtils.toJSONString(requestMap);    com.alibaba.fastjson.JSON <!-- https://mvnrepository.com/a ...

  6. C++课程 second work _1025

    传送门 Problem 题目不是特别难,只是跪在了最后一个测试点(已解决). 最后一个测试点= = 无效节点...无力ing

  7. Hibernate连接数据库一直报NullPointerException

    原来是少了这个.. //private HibernateTemplate hibernateTemplate; //少了下面 public HibernateTemplate getHibernat ...

  8. 网桥 以及 IEEE802.1D 生成树协议

    (一)网桥 网桥是一个layer 2设备,能够连接两个不同的网段. 如图

  9. 团队作业8——测试与发布(Beta阶段)之展示博客

    展示博客 1. 团队成员的简介和个人博客地址,团队的源码仓库地址. a.陈福鹏 擅长技术:java.web等网站方面技术: 博客:http://www.cnblogs.com/royalchen/b. ...

  10. 浏览器播放rtmp流

    我是利用flash插件实现的,需要以下几个文件: flowplayer-3.2.8.min.js flowplayer-3.2.18.swf flowplayer.rtmp-3.2.8.swf flo ...