【NOI2007】社交网络
【NOI2007】社交网络
Description
在社交网络(social network)的研究中,我们常常使用图论概念去解释一些社会现象。不妨看这样的一个问题。在一个社交圈子里有n个人,人与人之间有不同程度的关系。我 们将这个关系网络对应到一个n个结点的无向图上,两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值c,c越小,表示两 个人之间的关系越密切。
我们可以用对应结点之间的最短路长度来衡量两个人s和t之间的关系密切程度,注意到最短路径上的其他结点为s和t的联系提供了某种便利, 即这些结点对于s 和t之间的联系有一定的重要程度。我们可以通过统计经过一个结点v的最短路径的数目来衡量该结点在社交网络中的重要程度。
考虑到两个结点A和B之间可能会有多条最短路径。我们修改重要程度的定义如下:
令Cs,t表示从s到t的不同的最短路的数目,Cs,t(v)表示经过v从s到t的最短路的数目;则定义
为结点v在社交网络中的重要程度。
为了使I(v)和Cs,t(v)有意义,我们规定需要处理的社交网络都是连通的无向图,即任意两个结点之间都有一条有限长度的最短路径。
现在给出这样一幅描述社交网络s的加权无向图,请你求出每一个结点的重要程度。
Input
输入中第一行有两个整数,n和m,表示社交网络中结点和无向边的数目。在无向图中,我们将所有结点从1到n进行编号。
接下来m行,每行用三个整数a, b, c描述一条连接结点a和b,权值为c的无向边。注意任意两个结点之间最多有一条无向边相连,无向图中也不会出现自环(即不存在一条无向边的两个端点是相同的结点)。
Output
输出包括n行,每行一个实数,精确到小数点后3位。第i行的实数表示结点i在社交网络中的重要程度。
Sample Input
4 4
1 2 1
2 3 1
3 4 1
4 1 1
Sample Output
1.000
1.000
1.000
1.000
Hint
【样例说明】
社交网络如下图所示。 
对于1号结点而言,只有2号到4号结点和4号到2号结点的最短路经过1号结点,而2号结点和4号结点之间的最短路又有2条。因而根据定义,1号结点的重要程度计算为1/2+1/2=1。由于图的对称性,其他三个结点的重要程度也都是1。
【评分方法】
本题没有部分分,仅当你的程序计算得出的各个结点的重要程度与标准输出相差不超过0.001时,才能得到测试点的满分,否则不得分。
【数据规模和约定】
50%的数据中:n ≤10,m ≤45
100%的数据中:n ≤100,m ≤4 500,任意一条边的权值c是正整数,满足:1 ≤c ≤1 000。
所有数据中保证给出的无向图连通,且任意两个结点之间的最短路径数目不超过10^10。
Source
图论 ,最短路, NOI
// It is made by XZZ
#include<cstdio>
#include<algorithm>
using namespace std;
#define rep(a,b,c) for(rg int a=b;a<=c;a++)
#define drep(a,b,c) for(rg int a=b;a>=c;a--)
#define erep(a,b) for(rg int a=fir[b];a;a=nxt[a])
#define il inline
#define rg register
#define vd void
typedef long long ll;
il int gi(){
rg int x=;rg char ch=getchar();
while(ch<''||ch>'')ch=getchar();
while(ch>=''&&ch<='')x=x*+ch-'',ch=getchar();
return x;
}
int F[][],FF[][];
ll f[][];
int main(){
rg int n=gi(),m=gi(),a,b;
rep(i,,n)rep(j,,n)if(i-j)F[i][j]=;
while(m--)a=gi(),b=gi(),F[a][b]=F[b][a]=FF[a][b]=FF[b][a]=gi();
rep(k,,n)rep(i,,n)rep(j,,n)F[i][j]=min(F[i][j],F[i][k]+F[k][j]);
rep(i,,n)rep(j,,n)if(F[i][j]==FF[i][j])f[i][j]=;
rep(k,,n)rep(i,,n)rep(j,,n)if(i-j&&j-k&&k-i&&F[i][j]==F[i][k]+F[k][j])f[i][j]+=f[i][k]*f[k][j];
rep(s,,n){
rg double ans=0.0;
rep(i,,n)rep(j,,n)
if(i-j&&j-s&&s-i&&F[i][j]==F[i][s]+F[s][j])
ans+=(double)f[s][i]*f[j][s]/f[i][j];
printf("%.3lf\n",ans);
}
return ;
}
【NOI2007】社交网络的更多相关文章
- BZOJ 1491 [NOI2007]社交网络
1491: [NOI2007]社交网络 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1159 Solved: 660[Submit][Status] ...
- 图论(floyd算法):NOI2007 社交网络
[NOI2007] 社交网络 ★★ 输入文件:network1.in 输出文件:network1.out 简单对比 时间限制:1 s 内存限制:128 MB [问题描述] 在社交网络( ...
- BZOJ 1491: [NOI2007]社交网络( floyd )
floyd...求最短路时顺便求出路径数. 时间复杂度O(N^3) ------------------------------------------------------------------ ...
- 1491: [NOI2007]社交网络
1491: [NOI2007]社交网络 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 881 Solved: 518[Submit][Status] ...
- 洛谷 P2047 [NOI2007]社交网络 解题报告
P2047 [NOI2007]社交网络 题目描述 在社交网络(\(social\) \(network\))的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题.在一个社交圈子里有\ ...
- 【BZOJ1491】[NOI2007]社交网络 Floyd
[BZOJ1491][NOI2007]社交网络 Description 在社交网络(socialnetwork)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题. 在一个社交圈子 ...
- [BZOJ1491][NOI2007]社交网络 floyd
1491: [NOI2007]社交网络 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 2196 Solved: 1170[Submit][Status ...
- 洛谷——P2047 [NOI2007]社交网络
P2047 [NOI2007]社交网络 $Floyd$,一眼看到就是他(博主是不小心瞄到了这个题的标签吧qwq) 这个题目只要预处理出$S$到$T$的最短路的条数即可,类似$Spfa$的更新方法 如果 ...
- [NOI2007]社交网络(最短路)
[NOI2007]社交网络 Description 在社交网络(socialnetwork)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题. 在一个社交圈子里有n个人,人与人之 ...
- BZOJ1491:1491: [NOI2007]社交网络
1491: [NOI2007]社交网络 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 2204 Solved: 1175[Submit][Status ...
随机推荐
- 初始Flask
一.Flask介绍(轻量级的框架,非常快速的就能把程序搭建起来) Flask 主要特点小而轻,原生组件几乎为0, 三方提供的组件请参考Django 非常全面,属于短小精悍型框架 Flask是一个基于P ...
- MFC连接postgre数据库
配置环境: include:libpq-fe.h文件 lib:libpq.lib文件 dll:libeay32.dll,libiconv-2.dll,libintl-8.dll,libpq.dll,s ...
- 铁乐学python_day29_模块与包学习4
大部份内容摘自授课老师的博客http://www.cnblogs.com/Eva-J/ 编译python文件 编译python文件是为了提高加载模块的速度,强调强调强调:提高的是加载速度而绝非运行速度 ...
- 02-urllib库的get请求方式
对于urllib中的get请求方式,可以直接传入url的连接即可访问页面,但是对于要传入关键字的话,也可以用quote进行编码再传入. 案例如下: #get请求搜索参数如何添加 import urll ...
- 面向对象程序设计_课堂作业_01_Circle
The 1st classwork of the C++ program 题目: Create a program that asks for the radius of a circle and p ...
- C++项目第五次作业之文件的读取
前言 乍看题目,用文件读取数据,这不是很简单的事嘛ps:以前写单个.cpp就是用freopen读取数据,然而当开始写的时候就出现了问题(什么叫做实力作死,有一种痛叫too young too simp ...
- 张高兴的 Windows 10 IoT 开发笔记:0.96 寸 I2C OLED
This is a Windows 10 IoT Core project on the Raspberry Pi 2/3, coded by C#. GitHub:https://github.co ...
- 理解活在Iphone中的那些App (二)
app是什么,为什么而存在 存在即合理的说法,已经被批臭批烂了.所以,作为一个程序员不能简简单单的因为上面来了一个需求,就完成一个需求.让做一个app就做一个app,只是简单的认为存在即合理,头让写就 ...
- 搭建高可用mysql系列(2)-- Percona XtraDB Cluster 安装
本文主要介绍在 centos 下 Percona XtraDB Cluster(下文简称PXC) 的安装, 个人的系统版本信息如下: [root@c2-d09 worker]# more /etc/r ...
- linux下10款markdown软件
原文:https://linux.cn/article-7623-1.html 在这篇文章中,我们会点评一些可以在 Linux 上安装使用的最好的 Markdown 编辑器. 你可以在 Linux 平 ...