题目描述

给出一个长度为 $n$ 的序列,对于 $1\sim n$ 的每一个数 $i$ ,求这个序列所有长度为 $i$ 的子区间的最大值之和,输出每一个 $i$ 的答案模 $998244353$ 后异或起来的结果即可。

$n\le 10^6$ 。


题解

单调栈+差分

考虑位置 $i$ 作为最大值的贡献:使用单调栈求出这个数左面第一个大于等于它的位置 $lp_i$ ,和它后面第一个大于它的位置 $rp_i$ 。

那么所有以它为最大值的区间都满足:左端点在 $[lp_i+1,i]$ 范围内,右端点在 $[i,rp_i-1]$ 范围内。

设 $p=\text{min}(i-lp_i,rp_i-i)$ ,$q=\text{max}(i-lp_i,rp_i-i)$ ,那么 $i$ 的贡献相当于:

给 $[1,p)$ 内的长度 $x$ 加上 $x·a_i$ ;
给 $[p,q)$ 内的长度 $x$ 加上 $p·a_i$ ;
给 $[q,p+q)$ 内的长度 $x$ 加上 $(p+q-x)·a_i$ 。

维护两个差分数组,它们 $i$ 位置的的前缀和分别表示:给 $i$ 位置加上 $该数$ 、给 $i$ 位置加上 $该数·i$ 。

这样区间加、减就相当于在差分数组上修改。

最后统计前缀和,求答案即可。

时间复杂度 $O(n)$

#include <cstdio>
#include <algorithm>
#define N 1000010
#define mod 998244353
using namespace std;
typedef long long ll;
int sta[N] , top , lp[N] , rp[N];
ll a[N] , s[N] , ss[N];
inline void add(ll &x , ll y) {x = (x + y) % mod;}
inline void del(ll &x , ll y) {x = ((x - y) % mod + mod) % mod;}
int main()
{
int n , i , p , q;
ll ans = 0;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ )
{
scanf("%lld" , &a[i]);
while(top && a[i] > a[sta[top]]) top -- ;
lp[i] = sta[top] , sta[++top] = i;
}
top = 0 , sta[0] = n + 1;
for(i = n ; i ; i -- )
{
while(top && a[i] >= a[sta[top]]) top -- ;
rp[i] = sta[top] , sta[++top] = i;
p = i - lp[i] , q = rp[i] - i;
if(p > q) swap(p , q);
add(ss[1] , a[i]) , del(ss[p] , a[i]);
add(s[p] , p * a[i]) , del(s[q] , p * a[i]);
del(ss[q] , a[i]) , add(ss[p + q] , a[i]) , add(s[q] , (p + q) * a[i]) , del(s[p + q] , (p + q) * a[i]);
}
for(i = 1 ; i <= n ; i ++ ) add(s[i] , s[i - 1]) , add(ss[i] , ss[i - 1]) , ans ^= (s[i] + ss[i] * i) % mod;
printf("%lld\n" , ans);
return 0;
}

【uoj#213】[UNR #1]争夺圣杯 单调栈+差分的更多相关文章

  1. [UOJ213][UNR #1]争夺圣杯

    uoj description 一个长为\(n\)的序列,给定一个参数\(m\),求所有长度为\(m\)的区间的最大值之和. 对于所有的\(m\in[1,n]\)你都需要分别求出答案然后异或起来. \ ...

  2. uoj#213. 【UNR #1】争夺圣杯(单调栈)

    传送门 我们枚举每一个元素,用单调栈做两遍计算出它左边第一个大于它的位置\(l[i]\)和右边第一个大于它的位置\(r[i]\),那么一个区间以它为最大值就意味着这个区间的左端点在\([l[i]+1, ...

  3. uoj#213. 【UNR #1】争夺圣杯

    http://uoj.ac/problem/209 单调栈求出每个位置x左边第一个大于它的位置L[x]和右第一个不小于它的位置R[x],于是矩形L[x]<=l<=x<=r<=R ...

  4. UOJ#213——【UNR #1】争夺圣杯

    1.题意:给一个序列,枚举长度x,然后在这个序列中所有长度为x的区间,我们求出这些区间的最大值之和并取模,最后将所有的异或起来就好啦 2.分析:听说好多人写的 ,特来写一发 的算法骗访问量 话说这个东 ...

  5. 【UOJ UNR #1】争夺圣杯

    来自FallDream的博客,未经允许,请勿转载,谢谢. 传送门 考虑直接对每个数字,统计它会产生的贡献. 单调栈求出每个数字左边第一个大等于他的数,右边第一个大于他的 (注意只能有一边取等) 假设左 ...

  6. uoj213 【UNR #1】争夺圣杯

    题目 设\(f_i\)表示所有长度为\(i\)的区间的最大值的和,求\(\bigoplus \sum_{i=1}^nf_i\) 不难发现随机数据非常好做 由于一个随机序列的前缀最大值期望只会变化\(\ ...

  7. BZOJ1012: [JSOI2008]最大数maxnumber [线段树 | 单调栈+二分]

    1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 8748  Solved: 3835[Submi ...

  8. BZOJ 4453: cys就是要拿英魂![后缀数组 ST表 单调栈类似物]

    4453: cys就是要拿英魂! Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 90  Solved: 46[Submit][Status][Discu ...

  9. BZOJ 3238: [Ahoi2013]差异 [后缀数组 单调栈]

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2326  Solved: 1054[Submit][Status ...

随机推荐

  1. AWK高端功能-数组

    第1章 awk命令基础 1.1 awk命令执行过程 1.如果BEGIN 区块存在,awk执行它指定的动作. 2.awk从输入文件中读取一行,称为一条输入记录.如果输入文件省略,将从标准输入读取 3.a ...

  2. 三剑客之sed&grep

    第1章 练习题 1.1 第1题 取得/etc/hosts 文件的权限 如何取得/etc/hosts 文件的权限对应的数字内容,如-rw-r--r--  为 644,要求使用命令取得644 这样的数字. ...

  3. [PLC]ST语言七:MOV_SMOV_CML_BMOV_FMOV_XCH_BCD_BIN

    一:MOV/SMOV/CML/BMOV/FMOV/XCH/BCD/BIN 说明:简单的顺控指令不做其他说明. (MOV)控制要求:无 (MOV)编程梯形图: (MOV)结构化编程ST语言: (*传送指 ...

  4. C# 连接MongoDB,含用户验证

    配置文件中链接地址:mongodb://test:123456@192.168.168.186:9999/temp 读取配置文件: /// <summary> /// 构造函数 /// & ...

  5. OpenGL学习笔记(6) 基础光照的计算方法

    这个笔记只是冯氏光照模型下漫反射光以及镜面光照的计算方式的笔记 基础光照 基础光照分为环境光,漫反射光,镜面光照 环境光 环境光是一个常量,表示在没有光源的情况下物体的光 漫反射光 漫反射光分量的计算 ...

  6. wpf在image控件上快速显示内存图像

    这是在博客园的第一篇文章 如果你在寻找能够快速在image控件刷新大图像(比如分辨率3000*3000的图像)的办法,尤其是想把内存中的裸数据(只有图像的数据,不包含图像头等信息)快速显示到界面,那么 ...

  7. 主成分分析——PCA

    在数据挖掘过程中,当一个对象有多个属性(即该对象的测量过程产生多个变量)时,会产生高维度数据,这给数据挖掘工作带来了难度,我们希望用较少的变量来描述数据的绝大多数信息,此时一个比较好的方法是先对数据进 ...

  8. Python函数式编程中map()、reduce()和filter()函数的用法

    Python中map().reduce()和filter()三个函数均是应用于序列的内置函数,分别对序列进行遍历.递归计算以及过滤操作.这三个内置函数在实际使用过程中常常和“行内函数”lambda函数 ...

  9. flex布局时,内容区域自适应高度

    页面元素高度固定,中间的元素需要撑满屏幕,或者内容多时显示滚动条时,我们要把父元素设置为height:100vh <div class="parent"> <di ...

  10. Scrum立会报告+燃尽图(十二月六日总第三十七次):程序功能逻辑优化

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2284 项目地址:https://git.coding.net/zhang ...