BZOJ5101 POI2018Powódź(并查集)
如果某个格子的积水量超过了该格子的某个挡板高度,那么挡板另一端的积水量就会与其相同。看起来是一个不断合并的过程,考虑并查集。枚举深度,维护每个连通块内的方案数,深度超过某挡板高度时,将两端的连通块合并,即方案数相乘。再加上该连通块均为当前深度的这种方案。这样复杂度即为O(nmHα)或O(n2m2α)。
注意到每次更新所有连通块的答案并没有意义,于是可以进一步优化,对每个连通块存储其已被更新到的深度,需要将其合并时再实际更新。复杂度即为O(nmα)。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 1000010
#define P 1000000007
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,h,fa[N],ans[N],cur[N],t;
struct data
{
int x,y,z;
bool operator <(const data&a) const
{
return z<a.z;
}
}edge[N];
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
int trans(int x,int y){return (x-)*m+y;}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5101.in","r",stdin);
freopen("bzoj5101.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read(),h=read();
for (int i=;i<=n*m;i++) fa[i]=i,ans[i]=;
for (int i=;i<=n;i++)
for (int j=;j<m;j++)
t++,edge[t].x=trans(i,j),edge[t].y=trans(i,j+),edge[t].z=read();
for (int i=;i<n;i++)
for (int j=;j<=m;j++)
t++,edge[t].x=trans(i,j),edge[t].y=trans(i+,j),edge[t].z=read();
sort(edge+,edge+t+);
for (int i=;i<=t;i++)
{
int p=find(edge[i].x),q=find(edge[i].y);
if (p!=q)
{
ans[p]+=edge[i].z-cur[p];
ans[q]+=edge[i].z-cur[q];
fa[q]=p;ans[p]=1ll*ans[p]*ans[q]%P;cur[p]=edge[i].z;
}
}
cout<<(ans[find()]+h-cur[find()])%P;
return ;
}
BZOJ5101 POI2018Powódź(并查集)的更多相关文章
- 【BZOJ5101】[POI2018]Powód 并查集
[BZOJ5101][POI2018]Powód Description 在地面上有一个水箱,它的俯视图被划分成了n行m列个方格,相邻两个方格之间有一堵厚度可以忽略不计的墙,水箱与外界之间有一堵高度无 ...
- [bzoj5101][POI2018]Powódź_并查集
Powódź bzoj-5101 POI-2018 题目大意:在地面上有一个水箱,它的俯视图被划分成了$n$行$m$列个方格,相邻两个方格之间有一堵厚度可以忽略不计的墙,水箱与外界之间有一堵高度无穷大 ...
- BZOJ 4199: [Noi2015]品酒大会 [后缀数组 带权并查集]
4199: [Noi2015]品酒大会 UOJ:http://uoj.ac/problem/131 一年一度的“幻影阁夏日品酒大会”隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发“首席品 ...
- 关押罪犯 and 食物链(并查集)
题目描述 S 城现有两座监狱,一共关押着N 名罪犯,编号分别为1~N.他们之间的关系自然也极不和谐.很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突.我们用"怨气值"( ...
- 图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用
图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 ...
- bzoj1854--并查集
这题有一种神奇的并查集做法. 将每种属性作为一个点,每种装备作为一条边,则可以得到如下结论: 1.如果一个有n个点的连通块有n-1条边,则我们可以满足这个连通块的n-1个点. 2.如果一个有n个点的连 ...
- [bzoj3673][可持久化并查集 by zky] (rope(可持久化数组)+并查集=可持久化并查集)
Description n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 0& ...
- [bzoj3123][sdoi2013森林] (树上主席树+lca+并查集启发式合并+暴力重构森林)
Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数 ...
- 【BZOJ-3673&3674】可持久化并查集 可持久化线段树 + 并查集
3673: 可持久化并查集 by zky Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 1878 Solved: 846[Submit][Status ...
随机推荐
- 2018年美国大学生数学建模竞赛(MCM/ICM) 比赛心得
话不多说,题目先上: 这是我们这次选择的题目,说说建模的那些事! 美赛的时间和国赛挑战杯时间略有不同,貌似多的一天是为了让我们对文章进行一个翻译吧QAQ 建议参加美赛的同学可以参照此计划进行 Day0 ...
- jmeter☞工作区介绍(三)
基于jmeter4.0,jdk1.8 目录树:存放设计过程中使用的元件.执行过程中默认是从根节点开始顺序遍历元件.比如说HTTP请求的取样器就是元件,组件就是一个或多个元件的集合. 测试计划编辑区域: ...
- [学习笔记]SiftGPU入门
当有读者看到我这篇SiftGPU入门的学习笔记时,相信你已经读过了高博那篇<SLAM拾萃:SiftGPU>,那篇文章写于16年,已经过去两年的时间.在我尝试配置SiftGPU的环境时,遇到 ...
- Android Library和Android APP、Java Library的区别
Android Library和Android APP.Java Library的区别 Android Library在目录结构上与Android App相同,它能包含构建APP所需的一切(如源代码. ...
- tomcat 项目的搭建-【Linux】
- Echarts服务端生成图片
Echarts是百度发布的一套优秀的浏览器端图表控件,Echarts是基于html5的cavens绘图实现.而使用server端生成图片无法借用浏览器端渲染.通用的做法有两种: 是用headless浏 ...
- Netty源码分析第5章(ByteBuf)---->第6节: 命中缓存的分配
Netty源码分析第6章: ByteBuf 第六节: 命中缓存的分配 上一小节简单分析了directArena内存分配大概流程, 知道其先命中缓存, 如果命中不到, 则区分配一款连续内存, 这一小节带 ...
- 腾讯云linux+kodexplorer可道云搭建私有云盘
kodexplorer可道云介绍KodExplorer可道云,原名芒果云,是基于Web技术的私有云和在线文件管理系统.致力于为用户提供安全可控.可靠易用.高扩展性的私有云解决方案.用户只需通过简单环境 ...
- yocto-sumo源码解析(九): ProcessServer.main
前面讲到BitbakeServer实际上是一个ProcessServer,因此对ProcessServer进行了一个大略的分析集,这里着重再介绍一下ProcessServer.main. 1. 初始化 ...
- 国密算法--Openssl 实现国密算法(加密和解密)
上一次讲了产生密钥,这次我们讲一下加密解密的实现. 先说一下加密解密的流程,一下这些内容都是从国密局发布的国密标准文档里面摘录出来的.大家可以去国密局的网站上自己下载. 下列符号适用于本部分. A,B ...