\(\mathcal{Description}\)

  link.

  给定 \(n\) 个点 \(m\) 条边的无向图和一个源点 \(s\)。要求删除一个不同与 \(s\) 的结点 \(u\),使得有最多的点到 \(s\) 的最短距离改变。求出此时最短距离改变的结点的数量。

  \(n\le2\times10^5,m\le3\times10^5\)。

\(\mathcal{Solution}\)

  首先,以 \(s\) 为源点跑一个单源最短路。设 \(s\) 到 \(u\) 的距离为 \(dist_u\)。

  接着枚举所有点 \(u\) 与其一条边 \((u,v)\)。若满足 \(dist_u+\operatorname{cost}(u,v)=dist_v\),则表示该边是 \(v\) 最短路径的一条转移边,将其加入新图 \(G\) 中。

  显然 \(G\) 是有向无环图,所以直接建立支配树,求出子树大小最大的结点即可。

\(\mathcal{Code}\)

#include <queue>
#include <cstdio>
#include <vector>
#include <cstring> #define cost first
#define node second
#define adj( g, u, v ) \
for ( int _eid = g.head[u], v; v = g.to[_eid], _eid; _eid = g.nxt[_eid] ) typedef long long LL;
typedef std::pair<LL, int> pli; const int MAXN = 2e5, MAXM = 6e5, MAXLG = 17;
int n, m, s, dep[MAXN + 5], siz[MAXN + 5], rnk[MAXN + 5], fa[MAXN + 5][MAXLG + 5];
LL dist[MAXN + 5];
std::queue<int> que;
std::vector<int> pre[MAXN + 5];
std::vector<pli> sour[MAXN + 5]; inline int rint () {
int x = 0; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () );
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x;
} struct Graph {
int ecnt, head[MAXN + 5], to[MAXM + 5], nxt[MAXM + 5], ind[MAXN + 5];
inline void link ( const int s, const int t ) {
++ ind[to[++ ecnt] = t], nxt[ecnt] = head[s], head[s] = ecnt;
pre[t].push_back ( s );
}
} dag, domt; inline int LCA ( int u, int v ) {
if ( dep[u] < dep[v] ) u ^= v ^= u ^= v;
for ( int i = 17; ~ i; -- i ) if ( dep[fa[u][i]] >= dep[v] ) u = fa[u][i];
if ( u == v ) return u;
for ( int i = 17; ~ i; -- i ) if ( fa[u][i] ^ fa[v][i] ) u = fa[u][i], v = fa[v][i];
return fa[u][0];
} inline void calc ( const int u ) {
siz[u] = 1;
adj ( domt, u, v ) calc ( v ), siz[u] += siz[v];
} inline void Dijkstra ( const int s ) {
static bool vis[MAXN + 5] {};
static std::priority_queue<pli, std::vector<pli>, std::greater<pli> > pque;
memset ( dist, 0x3f, sizeof dist ), pque.push ( { dist[s] = 0, s } );
while ( ! pque.empty () ) {
pli p = pque.top (); pque.pop ();
if ( vis[p.node] ) continue;
vis[p.node] = true;
for ( pli e: sour[p.node] ) {
if ( ! vis[e.node] && p.cost + e.cost < dist[e.node] ) {
pque.push ( { dist[e.node] = p.cost + e.cost, e.node } );
}
}
}
} int main () {
n = rint (), m = rint (), s = rint ();
for ( int i = 1, u, v, w; i <= m; ++ i ) {
u = rint (), v = rint (), w = rint ();
sour[u].push_back ( { LL ( w ), v } );
sour[v].push_back ( { LL ( w ), u } );
}
Dijkstra ( s );
for ( int i = 1; i <= n; ++ i ) {
for ( pli e: sour[i] ) {
if ( dist[e.node] == dist[i] + e.cost ) {
dag.link ( i, e.node );
}
}
}
que.push ( s );
int cnt = 0;
for ( int u; ! que.empty (); que.pop () ) {
rnk[++ cnt] = u = que.front ();
adj ( dag, u, v ) if ( ! -- dag.ind[v] ) que.push ( v );
}
for ( int i = 1; i <= cnt; ++ i ) {
int u = rnk[i], f = 0;
if ( ! pre[u].empty () ) f = pre[u][0];
for ( int j = 1; j < ( int ) pre[u].size (); ++ j ) f = LCA ( f, pre[u][j] );
dep[u] = dep[fa[u][0] = f] + 1, domt.link ( f, u );
for ( int j = 1; j <= 17; ++ j ) fa[u][j] = fa[fa[u][j - 1]][j - 1];
}
calc ( s );
int ans = 0;
for ( int i = 1; i <= n; ++ i ) if ( i ^ s ) ans = ans < siz[i] ? siz[i] : ans;
printf ( "%d\n", ans );
return 0;
}

Solution -「CF 757F」Team Rocket Rises Again的更多相关文章

  1. Solution -「CF 1342E」Placing Rooks

    \(\mathcal{Description}\)   Link.   在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...

  2. Solution -「CF 1622F」Quadratic Set

    \(\mathscr{Description}\)   Link.   求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...

  3. Solution -「CF 923F」Public Service

    \(\mathscr{Description}\)   Link.   给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...

  4. Solution -「CF 923E」Perpetual Subtraction

    \(\mathcal{Description}\)   Link.   有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...

  5. Solution -「CF 1586F」Defender of Childhood Dreams

    \(\mathcal{Description}\)   Link.   定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...

  6. Solution -「CF 1237E」Balanced Binary Search Trees

    \(\mathcal{Description}\)   Link.   定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...

  7. Solution -「CF 623E」Transforming Sequence

    题目 题意简述   link.   有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...

  8. Solution -「CF 1023F」Mobile Phone Network

    \(\mathcal{Description}\)   Link.   有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...

  9. Solution -「CF 599E」Sandy and Nuts

    \(\mathcal{Description}\)   Link.   指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...

随机推荐

  1. SQL高级优化(四)之SQL优化

    SQL优化 一.SQL优化简介 解释:对于特定的要求,使用更有的SQL策略或索引策略,以达到让结果呈现的时间更短,从而提升操作效率的过程就是SQL优化. SQL优化包含在数据库级别优化中.我们平常所说 ...

  2. Zuul的应用

    一.介绍 注:Zuul中默认就已经集成了Ribbon负载均衡和Hystix熔断机制.但是所有的超时策略都是走的默认值,比如熔断超时时间只有1S,很容易就触发了. 二.依赖 <dependency ...

  3. Sentry 企业级数据安全解决方案 - Relay 操作指南

    内容整理自官方文档 本篇回顾了我们在自托管外部使用 Relay 时的操作指南,即在您的硬件上运行的 Relay 并将事件转发到 sentry.io. 系列 Sentry 企业级数据安全解决方案 - R ...

  4. antd的table组件设置Column的width列宽度不生效问题

    超长连续字段(长数字和长单词) 破坏表格布局的问题(即使你指定了列的宽度也会被挤开),之前组件内默认加过 word-break: break-word; 去纠正此类布局,又会引起其他的问题. 所以最好 ...

  5. 刨根问底: Kafka 到底会不会丢数据?

    大家好,我是 华仔, 又跟大家见面了. 上一篇作为专题系列的第二篇,从演进的角度带你深度剖析了关于 Kafka 请求处理全流程以及超高并发的网络架构设计的实现细节,今天开启第三篇,我们来聊聊 Kafk ...

  6. 微服务架构 | 3.2 Alibaba Nacos 注册中心

    目录 前言 1. Nacos 基础知识 1.1 Nacos 命名方式 1.2 Nasoc 是什么 1.3 Nacos 的 4 个关键特性 1.4 Nacos 生态图 1.5 Nacos 架构图 1.6 ...

  7. 都2022年了,你的前端工具集应该有vueuse

    摘要:一款基于Vue组合式API的函数工具集. 本文分享自华为云社区<vueuse:我不许身为vuer的前端,你的工具集只有lodash!>,作者: 前端要摸鱼 . vueuse 是什么? ...

  8. Solon Web 开发

    Solon Web 开发 一.开始 二.开发知识准备 三.打包与运行 四.请求上下文 五.数据访问.事务与缓存应用 六.过滤器.处理.拦截器 七.视图模板与Mvc注解 八.校验.及定制与扩展 九.跨域 ...

  9. 【CSAPP】第三章 程序的机器级表示

    目录 1. 数据的编码与存储 2. 汇编指令 2.1 数据传送指令 访存方式 数据传送指令 入栈出栈 2.2 算术/逻辑指令 2.3 过程控制指令 控制码 比较指令 跳转指令 条件设置指令 3. 程序 ...

  10. QT控件之QSlider

    singleStep:比如按下键盘的左右建,每次移动的距离 pageStep:比如用鼠标对准滑动条的前面按下,每次移动的距离 value:初始默认值 接下来看该控件拥有的信号: 重点看后面的四个,看字 ...