Solution -「AGC 012F」「AT 2366」Prefix Median
\(\mathcal{Description}\)
Link.
给定序列 \(\{a_{2n-1}\}\),将 \(\{a_{2n-1}\}\) 按任意顺序排列后,令序列 \(b_i\) 为前 \(2i-1\) 个数的中位数。求 \(\{b_n\}\) 的个数,对 \(10^9+7\) 取模。
\(n\le50\)。
\(\mathcal{Solution}\)
\(\{b_n\}\) 有一个很 naive 的性质:\(b_n\) 是常数,是 \(\{a_{2n-1}\}\) 的中位数。
考虑扩展这一性质,从后往前,\(b_{i+1}\) 所对应的 \(a\) 序列删去两个数后就得到 \(b_i\) 所对应的序列。显然,\(b_i\) 要么是 \(b_{i+1}\) 在新序列的前驱或后记,要么不变。
形式地,有性质:
\]
接着,考虑到中位数本身的性质,将 \(\{a_{2n+1}\}\) 升序排列后,可以确定每个 \(b_i\) 的范围:
\]
那么设状态 \(f(i,j,k)\) 表示确定前 \(i\) 位,中位数左边有 \(j\) 个数可用,右边有 \(k\) 个数可用的方案数。转移就……看代码吧 www~
\(\mathcal{Code}\)
#include <cstdio>
#include <algorithm>
const int MAXN = 50, MAXM = 100, MOD = 1e9 + 7;
int n, m, a[MAXM + 5], f[2][MAXM + 5][MAXM + 5];
inline void addeq ( int& a, const int b ) { if ( ( a += b ) >= MOD ) a -= MOD; }
int main () {
scanf ( "%d", &n ), m = 2 * n;
for ( int i = 1; i < m; ++ i ) scanf ( "%d", &a[i] );
std::sort ( a + 1, a + m );
f[0][0][0] = 1;
for ( int i = n, t = 0; i > 1; -- i, t ^= 1 ) {
bool dl = a[i] ^ a[i - 1], dr = a[m - i + 1] ^ a[m - i];
for ( int j = 0; j < m; ++ j ) {
for ( int k = 0; k < m; ++ k ) {
int& cur = f[t][j][k];
if ( ! cur ) continue;
addeq ( f[t ^ 1][j + dl][k + dr], cur );
for ( int p = 0; p < j + dl; ++ p ) addeq ( f[t ^ 1][p][k + dr + 1], cur );
for ( int p = 0; p < k + dr; ++ p ) addeq ( f[t ^ 1][j + dl + 1][p], cur );
cur = 0;
}
}
}
int ans = 0;
for ( int i = 0; i < m; ++ i ) {
for ( int j = 0; j < m; ++ j ) {
addeq ( ans, f[n & 1 ^ 1][i][j] );
}
}
printf ( "%d\n", ans );
return 0;
}
Solution -「AGC 012F」「AT 2366」Prefix Median的更多相关文章
- Solution -「CTS 2019」「洛谷 P5404」氪金手游
\(\mathcal{Description}\) Link. 有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \ ...
- 「题解」「美团 CodeM 资格赛」跳格子
目录 「题解」「美团 CodeM 资格赛」跳格子 题目描述 考场思路 思路分析及正解代码 「题解」「美团 CodeM 资格赛」跳格子 今天真的考自闭了... \(T1\) 花了 \(2h\) 都没有搞 ...
- 【翻译】西川善司的「实验做出的游戏图形」「GUILTY GEAR Xrd -SIGN-」中实现的「纯卡通动画的实时3D图形」的秘密,后篇
http://www.4gamer.net/games/216/G021678/20140714079/ 连载第2回的本回, Arc System Works开发的格斗游戏「GUILTY G ...
- Android内存管理(4)*官方教程 含「高效内存的16条策略」 Managing Your App's Memory
Managing Your App's Memory In this document How Android Manages Memory Sharing Memory Allocating and ...
- SSH连接时出现「WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!」解决办法
用ssh來操控github,沒想到連線時,出現「WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!」,後面還有一大串英文,這時當然要向Google大神求助 ...
- 「Windows MFC 」「Edit Control」 控件
「Windows MFC 」「Edit Control」 控件
- 「ZJOI2019」&「十二省联考 2019」题解索引
「ZJOI2019」&「十二省联考 2019」题解索引 「ZJOI2019」 「ZJOI2019」线段树 「ZJOI2019」Minimax 搜索 「十二省联考 2019」 「十二省联考 20 ...
- Loj #6069. 「2017 山东一轮集训 Day4」塔
Loj #6069. 「2017 山东一轮集训 Day4」塔 题目描述 现在有一条 $ [1, l] $ 的数轴,要在上面造 $ n $ 座塔,每座塔的坐标要两两不同,且为整点. 塔有编号,且每座塔都 ...
- Loj #6073.「2017 山东一轮集训 Day5」距离
Loj #6073.「2017 山东一轮集训 Day5」距离 Description 给定一棵 \(n\) 个点的边带权的树,以及一个排列$ p\(,有\)q $个询问,给定点 \(u, v, k\) ...
随机推荐
- MySQL 中如何定位 DDL 被阻塞的问题
经常碰到开发.测试童鞋会问,线下开发.测试环境,执行了一个DDL,发现很久都没有执行完,是不是被阻塞了?要怎么解决? 包括在群里,也经常会碰到类似问题:DDL 被阻塞了,如何找到阻塞它的 SQL ? ...
- MongoDB-基础知识学习(一)
概述 最近mongodb在互联网的活跃度直线上升,并且我们公司也使用了mongoDB 3.6 作为生产重要的数据库,我们项目组要监控mongodb的op.log日志,在此整理以前学习的知识,为以后备份 ...
- Easticsearch概述(API使用)二
Rest简介 一种软件架构风格,而不是标准,只是提供了一组设计原则和约束条件.它主要用于客户端和服务端互类的软件.基于这个风格设计的软件可以更简洁,更有层次,更易于实现缓存等机制 Rest的操作分为以 ...
- 创建app子应用,配置数据库,编写模型,进行数据迁移
文章目录 web开发django模型 1.创建app子应用 2.配置子应用 3.使用 4.配置子应用管理自已的路由 django数据库开发思维与ORM 1.创建数据库 2.配置数据库 3.安装pymy ...
- 一种Django多租户解决方案
什么是多租户? 多租户技术或称多重租赁技术,简称SaaS,是一种软件架构技术,是实现如何在多用户环境下(此处的多用户一般是面向企业用户)共用相同的系统或程序组件,并且可确保各用户间数据的隔离性. 多租 ...
- [转载]Python 资源大全中文版
[转载]Python 资源大全中文版 我想很多程序员应该记得 GitHub 上有一个 Awesome - XXX 系列的资源整理.awesome-python 是 vinta 发起维护的 Python ...
- vue和react 相似和区别
相似之处 他们都是JavaScript的UI框架,专注于创造前端的富应用 不同于早期的JavaScript框架"功能齐全",Reat与Vue只有框架的骨架,其他的功能如路由.状态管 ...
- MySQL语句SQL应用
目录 一:sql语句 1.什么是SQL语句? 二:基本SQL语句之库操作 三:基本SQL语句之表操作 1.查看当前所在库名称 2.切换数据库 四:基本SQL语句之记录操作 五:创建表的完整语法 一:s ...
- 学习JAVAWEB第十四天
## JSP:入门学习 1. 概念: * Java Server Pages: java服务器端页面 * 可以理解为:一个特殊的页面,其中既可以指定定义html标签,又可以定义java代码 * 用于简 ...
- Python写春联(turtle版)
Python就好比编程界的瑞士军刀,开箱即用.无所不能.这得益于Python简洁易用的语法,以及丰富的第三方库,你想在电脑上做什么,总能找到事半功倍的第三方库.比如,在这新春佳节之际,用Python来 ...