[LeetCode每日一题]1143. 最长公共子序列
[LeetCode每日一题]1143. 最长公共子序列
问题
给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。
一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。
两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。
示例 1:
输入:text1 = "abcde", text2 = "ace"
输出:3
解释:最长公共子序列是 "ace" ,它的长度为 3 。
示例 2:
输入:text1 = "abc", text2 = "abc"
输出:3
解释:最长公共子序列是 "abc" ,它的长度为 3 。
示例 3:
输入:text1 = "abc", text2 = "def"
输出:0
解释:两个字符串没有公共子序列,返回 0 。
提示:
1 <= text1.length, text2.length <= 1000
text1 和 text2 仅由小写英文字符组成。
简单的动态规划,z大神秒杀的那种,本菜鸡瑟瑟发抖。
解题思路
求两个数组或者字符串的最长公共子序列问题,肯定是要用动态规划的。
首先,区分两个概念:子序列可以是不连续的;子数组(子字符串)需要是连续的;
另外,动态规划也是有套路的:单个数组或者字符串要用动态规划时,可以把动态规划 dp[i] 定义为 nums[0:i] 中想要求的结果;当两个数组或者字符串要用动态规划时,可以把动态规划定义成两维的 dp[i][j] ,其含义是在 A[0:i] 与 B[0:j] 之间匹配得到的想要的结果。
1.状态定义
比如对于本题而言,可以定义 dp[i][j]表示 text1[0:i-1] 和 text2[0:j-1] 的最长公共子序列。 (注:text1[0:i-1] 表示的是 text1 的 第 0 个元素到第 i - 1 个元素,两端都包含)
之所以 dp[i][j] 的定义不是 text1[0:i] 和 text2[0:j] ,是为了方便当 i = 0 或者 j = 0 的时候,dp[i][j]表示为空字符串和另外一个字符串的匹配,这样 dp[i][j] 可以初始化为 0.
2.状态转移方程
知道状态定义之后,我们开始写状态转移方程。
当 text1[i - 1] == text2[j - 1] 时,说明两个子字符串的最后一位相等,所以最长公共子序列又增加了 1,所以 dp[i][j] = dp[i - 1][j - 1] + 1;举个例子,比如对于 ac 和 bc 而言,他们的最长公共子序列的长度等于 a 和 c 的最长公共子序列长度 0 + 1 = 1。
当 text1[i - 1] != text2[j - 1] 时,说明两个子字符串的最后一位不相等,那么此时的状态 dp[i][j] 应该是 dp[i - 1][j] 和 dp[i][j - 1] 的最大值。举个例子,比如对于 ace 和 bc 而言,他们的最长公共子序列的长度等于 ① ace 和 b 的最长公共子序列长度0 与 ② ac 和 bc 的最长公共子序列长度1 的最大值,即 1。
综上状态转移方程为:
dp[i][j] = dp[i - 1][j - 1] + 1dp[i][j]=dp[i−1][j−1]+1, 当 text1[i - 1] == text2[j - 1];text1[i−1]==text2[j−1];
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])dp[i][j]=max(dp[i−1][j],dp[i][j−1]), 当 text1[i - 1] != text2[j - 1]text1[i−1]!=text2[j−1]
3.状态的初始化
初始化就是要看当 i = 0 与 j = 0 时, dp[i][j] 应该取值为多少。
当 i = 0 时,dp[0][j] 表示的是text1中取空字符串 跟text2的最长公共子序列,结果肯定为 0.
当 j = 0 时,dp[i][0] 表示的是text2中取空字符串 跟text1的最长公共子序列,结果肯定为 0.
综上,当 i = 0 或者 j = 0 时,dp[i][j] 初始化为 0.
4.遍历方向与范围
由于 dp[i][j] 依赖与 dp[i - 1][j - 1] , dp[i - 1][j], dp[i][j - 1],所以i和j的遍历顺序肯定是从小到大的。
另外,由于当 ii 和 jj 取值为 0 的时候,dp[i][j] = 0,而 dp 数组本身初始化就是为 0,所以,直接让 i 和 j 从 1 开始遍历。遍历的结束应该是字符串的长度为 len(text1) 和 len(text2)。
5.最终返回结果
由于 dp[i][j] 的含义是 text1[0:i-1] 和 text2[0:j-1] 的最长公共子序列。我们最终希望求的是 text1 和 text2 的最长公共子序列。所以需要返回的结果是 i = len(text1) 并且 j = len(text2) 时的 dp[len(text1)][len(text2)]。
代码
经过上面的分析,我们可以得到下面的代码。
#include<bits/stdc++.h>
using namespace std;
class Solution {
public:
int longestCommonSubsequence(string text1, string text2) {
int m = text1.length(), n = text2.length();
vector<vector<int>> dp(m + 1, vector<int>(n + 1));
for (int i = 1; i <= m; i++) {
char c = text1.at(i - 1);
for (int j = 1; j <= n; j++) {
char b = text2.at(j - 1);
if (c == b) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
cout << dp[m][n] << endl;
return dp[m][n];
}
};
int main() {
Solution s;
string text1, text2;
text1 = "abcde", text2 = "ace";
s.longestCommonSubsequence(text1, text2);
return 0;
}
[LeetCode每日一题]1143. 最长公共子序列的更多相关文章
- 1. 线性DP 1143. 最长公共子序列
最经典双串: 1143. 最长公共子序列 (LCS) https://leetcode-cn.com/problems/longest-common-subsequence/submissions/ ...
- LeetCode 1143 最长公共子序列
链接:https://leetcode-cn.com/problems/longest-common-subsequence 给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序 ...
- LeetCode第14题:最长公共前缀
题目描述 编写一个函数来查找字符串数组中的最长公共前缀. 如果不存在公共前缀,返回空字符串 "". 示例 1: 输入: ["flower","flow ...
- 从最长公共子序列问题理解动态规划算法(DP)
一.动态规划(Dynamic Programming) 动态规划方法通常用于求解最优化问题.我们希望找到一个解使其取得最优值,而不是所有最优解,可能有多个解都达到最优值. 二.什么问题适合DP解法 如 ...
- Luogu 3402 最长公共子序列(二分,最长递增子序列)
Luogu 3402 最长公共子序列(二分,最长递增子序列) Description 经过长时间的摸索和练习,DJL终于学会了怎么求LCS.Johann感觉DJL孺子可教,就给他布置了一个课后作业: ...
- 【python】Leetcode每日一题-最长公共子序列
[python]Leetcode每日一题-最长公共子序列 [题目描述] 给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度.如果不存在 公共子序列 ,返回 0 . ...
- 【LeetCode每日一题 Day 5】5. 最长回文子串
大家好,我是编程熊,今天是LeetCode每日一题的第五天,一起学习LeetCode第五题<最长回文子串>. 题意 给你一个字符串 s,找到 s 中最长的回文子串. 示例 输入:s = & ...
- 每日一题-——最长公共子序列(LCS)与最长公共子串
最长公共子序列(LCS) 思路: 代码: def LCS(string1,string2): len1 = len(string1) len2 = len(string2) res = [[0 for ...
- 【js】Leetcode每日一题-完成所有工作的最短时间
[js]Leetcode每日一题-完成所有工作的最短时间 [题目描述] 给你一个整数数组 jobs ,其中 jobs[i] 是完成第 i 项工作要花费的时间. 请你将这些工作分配给 k 位工人.所有工 ...
随机推荐
- 【linux】系统编程-3-system-V IPC 信号量
目录 前言 5. 信号量 5.1 概念 5.2 工作原理 5.3 操作函数 5.3.1 semget() 5.3.2 semop() 5.3.3 semctl() 5.4 例程 参考: 前言 原文链接 ...
- 致命错误:Python.h:没有那个文件或目录
yum search python3 | grep dev sudo yum install python3xxx-devel
- 你真的了解Innodb存储引擎?
前言 前几篇记录了如何查看SQL执行计划.数据库事务相关的知识点 除了这两个,数据库还有两个是非常重要的,必须要考的 就是存储引擎和索引 今天先记录以下InnoDB存储引擎相关的知识点 MySQL存储 ...
- AgileConfig - 轻量级配置中心1.2.0发布,全新的UI✨✨✨
AgileConfig自发布以来有个"大问题"-UI太丑.因为当初这个项目是给自己用的,连UI界面都没有,全靠手动在数据库里改配置.后来匆匆忙忙使用bootstrap3简单的码了一 ...
- Spring(七篇)
(一)Spring 概述 (二)Spring Bean入门介绍 (三)Spring Bean继续入门 (四)Spring Bean注入方试 (五)Spring AOP简述 (六)Spring AOP切 ...
- 一文简述Java IO
Java IO 本文记录了在学习Java IO过程中的知识点,用于复习和快速查阅,不够详细的部分可能会在后续补充. 什么是流 流:内存与存储设备(外存)之间传输数据的通道 IO:输入流输出流(如rea ...
- Apache配置虚拟目录+Zend Studio访问
1 概述 Apache配置虚拟目录,然后可以通过Zend Studio的工程去访问,只需要修改Apache的httpd.conf文件. 2 修改httpd.conf 找到Apache安装目录下的htt ...
- JAVAEE_Servlet_23_路径编写总结和url_pattern的编写方式
路径编写总结和url_pattern的编写方式 路径的编写 超链接 form表单的action属性 重定向 response.sendRedirect("/项目名/资源路径"): ...
- kubeadm安装kubernetes1.18.5
前言 尝试安装helm3,kubernetes1.18,istio1.6是否支持现有集群平滑迁移 版本 Centos7.6 升级内核4.x kubernetes:v1.18.5 helm:v3.2.4 ...
- Pandas的loc,iloc与ix的用法及区别
1.先来谈一谈loc,loc这个方法就是你有啥我就用啥,你没有的我不用,pandas对象的index,columns有什么,pd.loc[index,column],index就是pd.index的其 ...