[LeetCode每日一题]1143. 最长公共子序列

问题

给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。
两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。 示例 1:
输入:text1 = "abcde", text2 = "ace"
输出:3
解释:最长公共子序列是 "ace" ,它的长度为 3 。
示例 2:
输入:text1 = "abc", text2 = "abc"
输出:3
解释:最长公共子序列是 "abc" ,它的长度为 3 。
示例 3:
输入:text1 = "abc", text2 = "def"
输出:0
解释:两个字符串没有公共子序列,返回 0 。 提示:
1 <= text1.length, text2.length <= 1000
text1 和 text2 仅由小写英文字符组成。

简单的动态规划,z大神秒杀的那种,本菜鸡瑟瑟发抖。

解题思路

求两个数组或者字符串的最长公共子序列问题,肯定是要用动态规划的。

首先,区分两个概念:子序列可以是不连续的;子数组(子字符串)需要是连续的;

另外,动态规划也是有套路的:单个数组或者字符串要用动态规划时,可以把动态规划 dp[i] 定义为 nums[0:i] 中想要求的结果;当两个数组或者字符串要用动态规划时,可以把动态规划定义成两维的 dp[i][j] ,其含义是在 A[0:i] 与 B[0:j] 之间匹配得到的想要的结果。

1.状态定义

比如对于本题而言,可以定义 dp[i][j]表示 text1[0:i-1] 和 text2[0:j-1] 的最长公共子序列。 (注:text1[0:i-1] 表示的是 text1 的 第 0 个元素到第 i - 1 个元素,两端都包含)

之所以 dp[i][j] 的定义不是 text1[0:i] 和 text2[0:j] ,是为了方便当 i = 0 或者 j = 0 的时候,dp[i][j]表示为空字符串和另外一个字符串的匹配,这样 dp[i][j] 可以初始化为 0.

2.状态转移方程

知道状态定义之后,我们开始写状态转移方程。

当 text1[i - 1] == text2[j - 1] 时,说明两个子字符串的最后一位相等,所以最长公共子序列又增加了 1,所以 dp[i][j] = dp[i - 1][j - 1] + 1;举个例子,比如对于 ac 和 bc 而言,他们的最长公共子序列的长度等于 a 和 c 的最长公共子序列长度 0 + 1 = 1。

当 text1[i - 1] != text2[j - 1] 时,说明两个子字符串的最后一位不相等,那么此时的状态 dp[i][j] 应该是 dp[i - 1][j] 和 dp[i][j - 1] 的最大值。举个例子,比如对于 ace 和 bc 而言,他们的最长公共子序列的长度等于 ① ace 和 b 的最长公共子序列长度0 与 ② ac 和 bc 的最长公共子序列长度1 的最大值,即 1。

综上状态转移方程为:

dp[i][j] = dp[i - 1][j - 1] + 1dp[i][j]=dp[i−1][j−1]+1, 当 text1[i - 1] == text2[j - 1];text1[i−1]==text2[j−1];

dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])dp[i][j]=max(dp[i−1][j],dp[i][j−1]), 当 text1[i - 1] != text2[j - 1]text1[i−1]!=text2[j−1]

3.状态的初始化

初始化就是要看当 i = 0 与 j = 0 时, dp[i][j] 应该取值为多少。

当 i = 0 时,dp[0][j] 表示的是text1中取空字符串 跟text2的最长公共子序列,结果肯定为 0.

当 j = 0 时,dp[i][0] 表示的是text2中取空字符串 跟text1的最长公共子序列,结果肯定为 0.

综上,当 i = 0 或者 j = 0 时,dp[i][j] 初始化为 0.

4.遍历方向与范围

由于 dp[i][j] 依赖与 dp[i - 1][j - 1] , dp[i - 1][j], dp[i][j - 1],所以i和j的遍历顺序肯定是从小到大的。

另外,由于当 ii 和 jj 取值为 0 的时候,dp[i][j] = 0,而 dp 数组本身初始化就是为 0,所以,直接让 i 和 j 从 1 开始遍历。遍历的结束应该是字符串的长度为 len(text1) 和 len(text2)。

5.最终返回结果

由于 dp[i][j] 的含义是 text1[0:i-1] 和 text2[0:j-1] 的最长公共子序列。我们最终希望求的是 text1 和 text2 的最长公共子序列。所以需要返回的结果是 i = len(text1) 并且 j = len(text2) 时的 dp[len(text1)][len(text2)]。

代码

经过上面的分析,我们可以得到下面的代码。

#include<bits/stdc++.h>
using namespace std;
class Solution {
public:
int longestCommonSubsequence(string text1, string text2) {
int m = text1.length(), n = text2.length();
vector<vector<int>> dp(m + 1, vector<int>(n + 1));
for (int i = 1; i <= m; i++) {
char c = text1.at(i - 1);
for (int j = 1; j <= n; j++) {
char b = text2.at(j - 1);
if (c == b) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
cout << dp[m][n] << endl;
return dp[m][n];
}
}; int main() {
Solution s;
string text1, text2;
text1 = "abcde", text2 = "ace";
s.longestCommonSubsequence(text1, text2);
return 0;
}

[LeetCode每日一题]1143. 最长公共子序列的更多相关文章

  1. 1. 线性DP 1143. 最长公共子序列

    最经典双串: 1143. 最长公共子序列 (LCS)  https://leetcode-cn.com/problems/longest-common-subsequence/submissions/ ...

  2. LeetCode 1143 最长公共子序列

    链接:https://leetcode-cn.com/problems/longest-common-subsequence 给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序 ...

  3. LeetCode第14题:最长公共前缀

    题目描述 编写一个函数来查找字符串数组中的最长公共前缀. 如果不存在公共前缀,返回空字符串 "". 示例 1: 输入: ["flower","flow ...

  4. 从最长公共子序列问题理解动态规划算法(DP)

    一.动态规划(Dynamic Programming) 动态规划方法通常用于求解最优化问题.我们希望找到一个解使其取得最优值,而不是所有最优解,可能有多个解都达到最优值. 二.什么问题适合DP解法 如 ...

  5. Luogu 3402 最长公共子序列(二分,最长递增子序列)

    Luogu 3402 最长公共子序列(二分,最长递增子序列) Description 经过长时间的摸索和练习,DJL终于学会了怎么求LCS.Johann感觉DJL孺子可教,就给他布置了一个课后作业: ...

  6. 【python】Leetcode每日一题-最长公共子序列

    [python]Leetcode每日一题-最长公共子序列 [题目描述] 给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度.如果不存在 公共子序列 ,返回 0 . ...

  7. 【LeetCode每日一题 Day 5】5. 最长回文子串

    大家好,我是编程熊,今天是LeetCode每日一题的第五天,一起学习LeetCode第五题<最长回文子串>. 题意 给你一个字符串 s,找到 s 中最长的回文子串. 示例 输入:s = & ...

  8. 每日一题-——最长公共子序列(LCS)与最长公共子串

    最长公共子序列(LCS) 思路: 代码: def LCS(string1,string2): len1 = len(string1) len2 = len(string2) res = [[0 for ...

  9. 【js】Leetcode每日一题-完成所有工作的最短时间

    [js]Leetcode每日一题-完成所有工作的最短时间 [题目描述] 给你一个整数数组 jobs ,其中 jobs[i] 是完成第 i 项工作要花费的时间. 请你将这些工作分配给 k 位工人.所有工 ...

随机推荐

  1. FPGA的开发板

    板卡架构 板载FPGA(K7-325T)处理24端口10/100/1000M以太网数据: FPGA外挂4Gbit的DDR3颗粒,最大支持800MHz: 板载CPU进行系统配置.管理,并与客户端软件通信 ...

  2. Hibernate在oracle中ID增长的方式(续)

    引用链接:http://blog.csdn.net/w183705952/article/details/7367272 第二种:设置ID的增长策略是native,但是需要创建一个名字为hiberna ...

  3. MAC (Message Authentication Code,消息认证码算法)

    需要将密钥发送到对方,对方用该密钥进行摘要处理,进行摘要验证. //初始化KeyGenerator KeyGenerator keyGenerator= KeyGenerator.getInstanc ...

  4. python使用try...except语句处理异常

    try....except语句语法格式: try: <语句> except(异常名称): <语句> 注意在except语句中的括号中的异常名称是可以省略的,当省略时就是全捕捉 ...

  5. 下载微软pdb符号文件

    使用symchk.exe  逐层下载c:\windows\system32下的pdb文件 symchk /r c:\windows\system32 /s SRV*D:\mypdb\*http://m ...

  6. java 基础知识储备

    初始JAVA JAVA 帝国的诞生 1972年C诞生 贴近硬件,运行极快,效率极高. 操作系统,编译器,数据库,网络系统等 指针和内存管理 1982年C++诞生 面向对象 兼容C 图形领域.游戏等 纵 ...

  7. $@ 与 $* 差在哪?-- Shell十三问<第九问>

    $@ 与 $* 差在哪?-- Shell十三问<第九问> 要说 $@ 与 $* 之前,需得先从 shell script 的 positional parameter 谈起.我们都已经知道 ...

  8. oo第四单元总结及总课程回顾

    一.第四单元架构设计 1.第一次作业 第一次作业要求实现的只有对类图的分析.为了直观地搭建出一个类图,我新建了Manager类来处理UmlElement以及搭建树.但由于未能做好时间管理,因此第一次作 ...

  9. 树结构系列(四):MongoDb 使用的到底是 B 树,还是 B+ 树?

    文章首发于「陈树义」公众号及个人博客 shuyi.tech 文章首发于「陈树义」公众号及个人博客 shuyi.tech,欢迎访问更多有趣有价值的文章. 关于 B 树与 B+ 树,网上有一个比较经典的问 ...

  10. 字符串函数的实现(三)之strcat

    C语言中的字符串函数有如下这些 获取字符串长度 strlen 长度不受限制的字符串函数 strcpy strcat strcmp 长度受限制的字符串函数 strncpy strncat strncmp ...