[atAGC048F]01 Record
先将这个序列翻转,贪心找到最长的'101010……'的形式的子序列并删除,重复此过程并记这些字符串长度依次为$l_{1},l_{2},...,l_{n}$,若最终还有字符剩余则一定无解
假设$S$中元素从大到小依次为$x_{1},x_{2},...,x_{m}$,则合法当且仅当:
1.$L=\sum_{i=1}^{n}l_{i}=\sum_{i=1}^{m}x_{i}$
2.$\forall 1\le i\le n,\sum_{j=1}^{i}\lfloor \frac{l_{j}}{2}\rfloor\ge \sum_{j=1}^{i}\lfloor \frac{x_{j}}{2}\rfloor$(可以证明$n\le m$)
3.$\forall 1\le i\le n,\sum_{j=1}^{i}\lceil \frac{l_{j}}{2}\rceil\ge \sum_{j=1}^{i}\lceil \frac{x_{j}}{2}\rceil$
考虑必要性,第一个条件是因为$x_{i}$必然操作$x_{i}$次从而产生长为$x_{i}$的串,而$\sum_{i=1}^{n}l_{i}$即为序列长度(有剩余字符无解),因此相等
对于第2和3个限制(以2为例),每一个$x_{i}$产生了一个长度为$x_{i}$的'101010……'的序列,以此为$l_{i}$则恰好满足,那么选择最长的'101010……'前缀和一定不会变小,因此满足该条件
充分性的证明过程可以看原题解后半部分:
考虑dp,令$f[i][j][k][l]$表示有多少种$x_{1},x_{2},...,x_{i}$满足$\sum_{t=1}^{i}\lfloor \frac{x_{t}}{2}\rfloor=j$且$\sum_{t=1}^{i}\lceil \frac{x_{t}}{2}\rceil=k$且$x_{i}=l$,这样转移复杂度为$o(L^{5})$,最终答案即$\sum_{i=n}^{L}\sum_{l=1}^{L}f[i][\sum_{j=1}^{n}\lfloor\frac{l_{j}}{2}\rfloor][\sum_{k=1}^{n}\lceil\frac{l_{k}}{2}\rceil][l]$
由于$x_{1}\ge x_{2}\ge ...\ge x_{i}$,而$\sum_{j=1}^{i}x_{i}\le L$,因此$l\le \frac{L}{i}$,再通过前缀和可以优化到$o(L^{3}\ln L)$,空间上通过对第一维滚动可以做到$o(L^{3})$

1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 305
4 #define mod 1000000007
5 int n,m,ans,a[N],s1[N],s2[N],f[2][N][N][N];
6 char s[N];
7 int main(){
8 scanf("%s",s);
9 int l=m=strlen(s);
10 for(int i=0;i<l/2;i++)swap(s[i],s[l-i-1]);
11 while (l){
12 if (s[0]=='0'){
13 printf("0");
14 return 0;
15 }
16 int p=1,ll=l;
17 n++;
18 l=0;
19 for(int i=0;i<ll;i++)
20 if (s[i]-'0'!=p)s[l++]=s[i];
21 else{
22 a[n]++;
23 p^=1;
24 }
25 }
26 for(int i=1;i<=m;i++)s1[i]=s1[i-1]+a[i]/2;
27 for(int i=1;i<=m;i++)s2[i]=s2[i-1]+(a[i]+1)/2;
28 f[0][0][0][m]=1;
29 for(int i=0,p=1;i<m;i++,p^=1){
30 for(int j=0;j<=s1[i+1];j++)
31 for(int k=0;k<=s2[i+1];k++)
32 for(int l=1;l<=m/max(i-1,1);l++)f[p][j][k][l]=0;
33 for(int j=0;j<=s1[i];j++)
34 for(int k=0;k<=s2[i];k++){
35 for(int l=m/max(i,1)-1;l;l--)
36 f[p^1][j][k][l]=(f[p^1][j][k][l]+f[p^1][j][k][l+1])%mod;
37 for(int l=1;l<=m/(i+1);l++)
38 if ((j+l/2<=s1[i+1])&&(k+(l+1)/2<=s2[i+1]))
39 f[p][j+l/2][k+(l+1)/2][l]=(f[p][j+l/2][k+(l+1)/2][l]+f[p^1][j][k][l])%mod;
40 }
41 if (i>=n-1)
42 for(int j=1;j<=m;j++)ans=(ans+f[p][s1[n]][s2[n]][j])%mod;
43 }
44 printf("%d",ans);
45 }
[atAGC048F]01 Record的更多相关文章
- Graph database_neo4j 底层存储结构分析(8)
3.8 示例1:neo4j_exam 下面看一个简单的例子,然后看一下几个主要的存储文件,有助于理解<3–neo4j存储结构>描述的neo4j 的存储格式. 3.8.1 neo4j ...
- MapReduce 模式、算法和用例(MapReduce Patterns, Algorithms, and Use Cases)
在新文章“MapReduce模式.算法和用例”中,Ilya Katsov提供了一个系统化的综述,阐述了能够应用MapReduce框架解决的问题. 文章开始描述了一个非常简单的.作为通用的并行计算框架的 ...
- MapReduce 模式、算法和用例
翻译自:http://highlyscalable.wordpress.com/2012/02/01/mapreduce-patterns/ 在这篇文章里总结了几种网上或者论文中常见的MapReduc ...
- 『OpenCV3』Harris角点特征_API调用及python手动实现
一.OpenCV接口调用示意 介绍了OpenCV3中提取图像角点特征的函数: # coding=utf- import cv2 import numpy as np '''Harris算法角点特征提取 ...
- 【NS2】各种TCP版本 之 TCP Tahoe 和 TCP Reno(转载)
实验目的 学习TCP的拥塞控制机制,并了解TCP Tahoe 和 TCP Reno的运行方式. 基础知识回顾 TCP/IP (Transmission Control Protocol/Interne ...
- word record 01
词义默认包括发音 coil /kɔɪl/ 发音(kuo you) collage /kə'lɑʒ/ 发音(ke la shi) colleague /'kɑliɡ/ 发音 (ka li ge) com ...
- salesforce 零基础学习(六十二)获取sObject中类型为Picklist的field values(含record type)
本篇引用以下三个链接: http://www.tgerm.com/2012/01/recordtype-specific-picklist-values.html?m=1 https://github ...
- Track 造成Goldengate abended的那条record
Email收到了这样的报错: 2016-12-07 02:52:22 WARNING OGG-01004 Aborted grouped transaction on 'MSP.USER_ACTI ...
- Bug #19528825 "UNABLE TO PURGE A RECORD"
概述: 在生产环境中,当开启insert buffer时(参数innodb_change_buffering=all),部分实例偶尔会出现“UNABLE TO PURGE A RECORD”错误.这个 ...
随机推荐
- 极简SpringBoot指南-Chapter04-基于SpringBoot的书籍管理Web服务
仓库地址 w4ngzhen/springboot-simple-guide: This is a project that guides SpringBoot users to get started ...
- Analysis Tools(分析工具)
分析工具 1.叠加分析 # Process: 交集取反 arcpy.SymDiff_analysis("", "", 输出要素类, "ALL" ...
- Django实现用户登录注册
本文将会介绍小白如何完成一个用户登录注册系统 新建一个Django项目,名字为login_register,并且使用命令manage.py startapp.User(名字自己随便起) 最终djang ...
- MySQL ENGINES 引擎
引擎 存储引擎是数据库底层软件组织. 数据库管理系统(DBMS)使用数据引擎进行创建.查询.更新和删除数据. 不同的存储引擎提供不同的存储机制.索引技巧.锁定水平等功能. MySQL的核心就是存储引擎 ...
- FastAPI 学习之路(十二)接口几个额外信息和额外数据类型
系列文章: FastAPI 学习之路(一)fastapi--高性能web开发框架 FastAPI 学习之路(二) FastAPI 学习之路(三) FastAPI 学习之路(四) FastAPI 学习之 ...
- 阿里云服务器上在docker部署jenkins
1.查询jenkins:docker search jenkins 2.拉取jenkins镜像 docker pull jenkins/jenkins:lts 3.新建jenkins的工作目录: mk ...
- SPOJ16636 Journey IE2
SPOJ16636 Journey IE2 更好的阅读体验 在Byteland有n个城市,编号从1到n.这些城市由m条双向道路网络连接.众所周知,每一对城市最多只能由一条道路连接. Byteman最近 ...
- CVE-2017-11882 漏洞分析总结 新手漏洞分析详细教程
CVE-2017-11882分析总结 注: 这篇随笔记录了CVE-2017-11882漏洞分析的整个过程,并介绍了相关调试软件的使用 漏洞信息 CVE-2017-11882属于缓冲区溢出类型漏洞,产生 ...
- 自动化运维利器Ansible要点汇总
由于大部分互联网公司服务器环境复杂,线上线下环境.测试正式环境.分区环境.客户项目环境等造成每个应用都要重新部署,而且服务器数量少则几十台,多则千台,若手工一台台部署效率低下,且容易出错,不利后期运维 ...
- cassandra表中主键的类型
cassandra表中主键的类型及区分? 一.类型及区分 二.参考文章 一.类型及区分 Cassandra的4种Key Primary Key 主键 Composite Key,Compound Ke ...