「CF1208G」 Polygons
「CF1208G」 Polygons
似乎我校神犇在很久以前和我提过这题?
首先有一点显而易见:这 \(k\) 个多边形肯定至少有一个公共的顶点。假设我们将此点定义为起点。
那么对于一个正 \(n\) 边形,每一条边所截的短弧所对应的圆心角大小相等,所以我们可以把顶点标记为 \(\frac{1}{n},\frac{2}{n},\frac{3}{n},\cdots,\frac{n}{n}\)。
那么有结论:对于任意一个正 \(n\) 边形的顶点,当且仅当顶点标号为一个最简分数时才会被统计进答案。
证明也很简单,假设存在一个正 \(n\) 边形顶点标号为非最简分数被统计进答案,那么将标号化为最简分数后其所对应的正多边形我们一定没有选择。但是显然这个正多边形的点数比我们刚才选择的正 \(n\) 边形要少,这与题目要求相悖,故假设不成立。
因为 \(n\ge 3\),所以有两个顶点没有被我们统计到:\(\frac{1}{2} , \frac{n}{n}\) 。
考虑特判:
当 \(k=1\) 时我们一定会选择正三角形,其包含 \(\frac{n}{n}\)。
当 \(k=2\) 时我们可以选择正三角形和正四边形,其包含 \(\frac{1}{2} , \frac{n}{n}\)。
当 \(k\ge 3\) 时由于已经选择了正三角形和正四边形,未统计的两个顶点已经统计,所以不受影响。
考虑对一个正 \(n\) 边形统计这样的最简分数,很显然可以发现答案就是 \(\varphi(n)\)。所以我们选择从 \(\varphi(5)\) 开始的前 \(k\) 大的欧拉函数值即可。
总时间复杂度为 \(O(n\log_2n)\),使用基数排序可优化至 \(O(n)\)。
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e6+5;
int p[maxn],pri[maxn],phi[maxn],cnt;
int n,k;
int init(){
phi[1]=1;
for(int i=2;i<=n;++i){
if(!p[i]){
pri[++cnt]=i,phi[i]=i-1;
}
for(int j=1;j<=cnt&&pri[j]*i<=n;++j){
p[pri[j]*i]=1;
if(i%pri[j]==0){
phi[pri[j]*i]=phi[i]*pri[j];
break;
}
else phi[i*pri[j]]=phi[i]*(pri[j]-1);
}
}
}
int main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
cin>>n>>k;
if(k==1) cout<<3<<'\n',exit(0);
if(k==2) cout<<6<<'\n',exit(0);
init();
sort(phi+5,phi+n+1);
long long ans=6;
for(int i=5;i<=5+k-2-1;++i) ans+=phi[i];
cout<<ans<<'\n';
return 0;
}
「CF1208G」 Polygons的更多相关文章
- 「译」JUnit 5 系列:条件测试
原文地址:http://blog.codefx.org/libraries/junit-5-conditions/ 原文日期:08, May, 2016 译文首发:Linesh 的博客:「译」JUni ...
- 「译」JUnit 5 系列:扩展模型(Extension Model)
原文地址:http://blog.codefx.org/design/architecture/junit-5-extension-model/ 原文日期:11, Apr, 2016 译文首发:Lin ...
- JavaScript OOP 之「创建对象」
工厂模式 工厂模式是软件工程领域一种广为人知的设计模式,这种模式抽象了创建具体对象的过程.工厂模式虽然解决了创建多个相似对象的问题,但却没有解决对象识别的问题. function createPers ...
- 「C++」理解智能指针
维基百科上面对于「智能指针」是这样描述的: 智能指针(英语:Smart pointer)是一种抽象的数据类型.在程序设计中,它通常是经由类型模板(class template)来实做,借由模板(tem ...
- 「JavaScript」四种跨域方式详解
超详细并且带 Demo 的 JavaScript 跨域指南来了! 本文基于你了解 JavaScript 的同源策略,并且了解使用跨域跨域的理由. 1. JSONP 首先要介绍的跨域方法必然是 JSON ...
- 「2014-5-31」Z-Stack - Modification of Zigbee Device Object for better network access management
写一份赏心悦目的工程文档,是很困难的事情.若想写得完善,不仅得用对工具(use the right tools),注重文笔,还得投入大把时间,真心是一件难度颇高的事情.但,若是真写好了,也是善莫大焉: ...
- 「2014-3-18」multi-pattern string match using aho-corasick
我是擅(倾)长(向)把一篇文章写成杂文的.毕竟,写博客记录生活点滴,比不得发 paper,要求字斟句酌八股结构到位:风格偏杂文一点,也是没人拒稿的.这么说来,arxiv 就好比是 paper 世界的博 ...
- 「2014-3-17」C pointer again …
记录一个比较基础的东东-- C 语言的指针,一直让人又爱又恨,爱它的人觉得它既灵活又强大,恨它的人觉得它太过于灵活太过于强大以至于容易将人绕晕.最早接触 C 语言,还是在刚进入大学的时候,算起来有好些 ...
- 「2014-3-13」Javascript Engine, Java VM, Python interpreter, PyPy – a glance
提要: url anchor (ajax) => javascript engine (1~4 articles) => java VM vs. python interpreter =& ...
随机推荐
- 使用Jekyll + GitHub Pages免费搭建个人博客
使用Jekyll + GitHub Pages免费搭建个人博客 My Blog:无名の辈 | VectorX (vectorxxxx.github.io) Download Ruby:Download ...
- JAVA并发(4)-并发队列ConcurrentLinkedQueue
本文开始介绍并发队列,为后面介绍线程池打下基础.并发队列莫非也是出队.入队操作,还有一个比较重要的点就是如何保证其线程安全性,有些并发队列保证线程安全是通过lock,有些是通过CAS. 我们从Conc ...
- conda 按照指定源下载python包
conda 按照指定源下载python包 换成了国内的pip源就可以正常安装了,我使用的是:pip install xlrd -i http://pypi.douban.com/simple --tr ...
- 浅谈:Redis持久化机制(二)AOF篇
浅谈:Redis持久化机制(二)AOF篇 上一篇我们提及到了redis的默认持久化方式RDB,是一种通过存储快照数据方式持久化的机制,它在宕机后会丢失掉最后一次更新RDB文件后的数据,这也是由于它 ...
- BEP 7:CUDA外部内存管理插件(下)
BEP 7:CUDA外部内存管理插件(下) Numba依赖 向库中添加EMM插件的实现自然会使Numba成为库的依赖项,而以前可能没有.为了使依赖关系可选,如果需要的话,可以有条件地实例化并注册EMM ...
- 阿里云视频云 Retina 多媒体 AI 体验馆开张啦!
带你体验视频更多可能 海量视频管理难度大?翻库检索特定人物费时费力?视频内容剪辑效率低?您的得力助手"Retina多媒体AI"体验馆已上线.带你感受视频AI黑科技,开启极致智能体验 ...
- 实验8、31个最重要的Python Flask面试问题和答案
实验介绍 1. 实验内容 内容涵盖了31个最热门的Flask面试问题,帮助学生更好的理解Flask. 2. 实验要点 了解面试Flask开发人员的常见问题 实验内容 Flask面试问答 Q:Flask ...
- 使用charles抓取https的方法
自己整理的步骤做个记录 1.下载证书,官方地址:http://www.charlesproxy.com/ssl.zip 可直接点击链接下载:http://charlesproxy.com/getssl ...
- 为什么有些公司的IT很乱?
--别问,问就是赛马,问就是KPI驱动 为什么很多公司甚至是闻名遐迩的资深IT公司,都被吐槽IT技术建设很烂呢?按惯例,问为什么之前,先问是不是. ▒壹·鹅厂▒ 2018年一个名为"当下腾讯 ...
- 5.23考试总结(NOIP模拟2)
5.23考试总结(NOIP模拟2) 洛谷题单 看第一题第一眼,不好打呀;看第一题样例又一眼,诶,我直接一手小阶乘走人 然后就急忙去干T2T3了 后来考完一看,只有\(T1\)骗到了\(15pts\)[ ...