Pandas高级教程之:自定义选项
简介
pandas有一个option系统可以控制pandas的展示情况,一般来说我们不需要进行修改,但是不排除特殊情况下的修改需求。本文将会详细讲解pandas中的option设置。
常用选项
pd.options.display 可以控制展示选项,比如设置最大展示行数:
In [1]: import pandas as pd
In [2]: pd.options.display.max_rows
Out[2]: 15
In [3]: pd.options.display.max_rows = 999
In [4]: pd.options.display.max_rows
Out[4]: 999
除此之外,pd还有4个相关的方法来对option进行修改:
- get_option() / set_option() - get/set 单个option的值
- reset_option() - 重设某个option的值到默认值
- describe_option() - 打印某个option的值
- option_context() - 在代码片段中执行某些option的更改
如下所示:
In [5]: pd.get_option("display.max_rows")
Out[5]: 999
In [6]: pd.set_option("display.max_rows", 101)
In [7]: pd.get_option("display.max_rows")
Out[7]: 101
In [8]: pd.set_option("max_r", 102)
In [9]: pd.get_option("display.max_rows")
Out[9]: 102
get/set 选项
pd.get_option 和 pd.set_option 可以用来获取和修改特定的option:
In [11]: pd.get_option("mode.sim_interactive")
Out[11]: False
In [12]: pd.set_option("mode.sim_interactive", True)
In [13]: pd.get_option("mode.sim_interactive")
Out[13]: True
使用 reset_option 来重置:
In [14]: pd.get_option("display.max_rows")
Out[14]: 60
In [15]: pd.set_option("display.max_rows", 999)
In [16]: pd.get_option("display.max_rows")
Out[16]: 999
In [17]: pd.reset_option("display.max_rows")
In [18]: pd.get_option("display.max_rows")
Out[18]: 60
使用正则表达式可以重置多条option:
In [19]: pd.reset_option("^display")
option_context 在代码环境中修改option,代码结束之后,option会被还原:
In [20]: with pd.option_context("display.max_rows", 10, "display.max_columns", 5):
....: print(pd.get_option("display.max_rows"))
....: print(pd.get_option("display.max_columns"))
....:
10
5
In [21]: print(pd.get_option("display.max_rows"))
60
In [22]: print(pd.get_option("display.max_columns"))
0
经常使用的选项
下面我们看一些经常使用选项的例子:
最大展示行数
display.max_rows 和 display.max_columns 可以设置最大展示行数和列数:
In [23]: df = pd.DataFrame(np.random.randn(7, 2))
In [24]: pd.set_option("max_rows", 7)
In [25]: df
Out[25]:
0 1
0 0.469112 -0.282863
1 -1.509059 -1.135632
2 1.212112 -0.173215
3 0.119209 -1.044236
4 -0.861849 -2.104569
5 -0.494929 1.071804
6 0.721555 -0.706771
In [26]: pd.set_option("max_rows", 5)
In [27]: df
Out[27]:
0 1
0 0.469112 -0.282863
1 -1.509059 -1.135632
.. ... ...
5 -0.494929 1.071804
6 0.721555 -0.706771
[7 rows x 2 columns]
超出数据展示
display.large_repr 可以选择对于超出的行或者列的展示行为,可以是truncated frame:
In [43]: df = pd.DataFrame(np.random.randn(10, 10))
In [44]: pd.set_option("max_rows", 5)
In [45]: pd.set_option("large_repr", "truncate")
In [46]: df
Out[46]:
0 1 2 3 4 5 6 7 8 9
0 -0.954208 1.462696 -1.743161 -0.826591 -0.345352 1.314232 0.690579 0.995761 2.396780 0.014871
1 3.357427 -0.317441 -1.236269 0.896171 -0.487602 -0.082240 -2.182937 0.380396 0.084844 0.432390
.. ... ... ... ... ... ... ... ... ... ...
8 -0.303421 -0.858447 0.306996 -0.028665 0.384316 1.574159 1.588931 0.476720 0.473424 -0.242861
9 -0.014805 -0.284319 0.650776 -1.461665 -1.137707 -0.891060 -0.693921 1.613616 0.464000 0.227371
[10 rows x 10 columns]
也可以是统计信息:
In [47]: pd.set_option("large_repr", "info")
In [48]: df
Out[48]:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 10 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 0 10 non-null float64
1 1 10 non-null float64
2 2 10 non-null float64
3 3 10 non-null float64
4 4 10 non-null float64
5 5 10 non-null float64
6 6 10 non-null float64
7 7 10 non-null float64
8 8 10 non-null float64
9 9 10 non-null float64
dtypes: float64(10)
memory usage: 928.0 bytes
最大列的宽度
display.max_colwidth 用来设置最大列的宽度。
In [51]: df = pd.DataFrame(
....: np.array(
....: [
....: ["foo", "bar", "bim", "uncomfortably long string"],
....: ["horse", "cow", "banana", "apple"],
....: ]
....: )
....: )
....:
In [52]: pd.set_option("max_colwidth", 40)
In [53]: df
Out[53]:
0 1 2 3
0 foo bar bim uncomfortably long string
1 horse cow banana apple
In [54]: pd.set_option("max_colwidth", 6)
In [55]: df
Out[55]:
0 1 2 3
0 foo bar bim un...
1 horse cow ba... apple
显示精度
display.precision 可以设置显示的精度:
In [70]: df = pd.DataFrame(np.random.randn(5, 5))
In [71]: pd.set_option("precision", 7)
In [72]: df
Out[72]:
0 1 2 3 4
0 -1.1506406 -0.7983341 -0.5576966 0.3813531 1.3371217
1 -1.5310949 1.3314582 -0.5713290 -0.0266708 -1.0856630
2 -1.1147378 -0.0582158 -0.4867681 1.6851483 0.1125723
3 -1.4953086 0.8984347 -0.1482168 -1.5960698 0.1596530
4 0.2621358 0.0362196 0.1847350 -0.2550694 -0.2710197
零转换的门槛
display.chop_threshold 可以设置将Series或者DF中数据展示为0的门槛:
In [75]: df = pd.DataFrame(np.random.randn(6, 6))
In [76]: pd.set_option("chop_threshold", 0)
In [77]: df
Out[77]:
0 1 2 3 4 5
0 1.2884 0.2946 -1.1658 0.8470 -0.6856 0.6091
1 -0.3040 0.6256 -0.0593 0.2497 1.1039 -1.0875
2 1.9980 -0.2445 0.1362 0.8863 -1.3507 -0.8863
3 -1.0133 1.9209 -0.3882 -2.3144 0.6655 0.4026
4 0.3996 -1.7660 0.8504 0.3881 0.9923 0.7441
5 -0.7398 -1.0549 -0.1796 0.6396 1.5850 1.9067
In [78]: pd.set_option("chop_threshold", 0.5)
In [79]: df
Out[79]:
0 1 2 3 4 5
0 1.2884 0.0000 -1.1658 0.8470 -0.6856 0.6091
1 0.0000 0.6256 0.0000 0.0000 1.1039 -1.0875
2 1.9980 0.0000 0.0000 0.8863 -1.3507 -0.8863
3 -1.0133 1.9209 0.0000 -2.3144 0.6655 0.0000
4 0.0000 -1.7660 0.8504 0.0000 0.9923 0.7441
5 -0.7398 -1.0549 0.0000 0.6396 1.5850 1.9067
上例中,绝对值< 0.5 的都会被展示为0 。
列头的对齐方向
display.colheader_justify 可以修改列头部文字的对齐方向:
In [81]: df = pd.DataFrame(
....: np.array([np.random.randn(6), np.random.randint(1, 9, 6) * 0.1, np.zeros(6)]).T,
....: columns=["A", "B", "C"],
....: dtype="float",
....: )
....:
In [82]: pd.set_option("colheader_justify", "right")
In [83]: df
Out[83]:
A B C
0 0.1040 0.1 0.0
1 0.1741 0.5 0.0
2 -0.4395 0.4 0.0
3 -0.7413 0.8 0.0
4 -0.0797 0.4 0.0
5 -0.9229 0.3 0.0
In [84]: pd.set_option("colheader_justify", "left")
In [85]: df
Out[85]:
A B C
0 0.1040 0.1 0.0
1 0.1741 0.5 0.0
2 -0.4395 0.4 0.0
3 -0.7413 0.8 0.0
4 -0.0797 0.4 0.0
5 -0.9229 0.3 0.0
常见的选项表格:
| 选项 | 默认值 | 描述 |
|---|---|---|
| display.chop_threshold | None | If set to a float value, all float values smaller then the given threshold will be displayed as exactly 0 by repr and friends. |
| display.colheader_justify | right | Controls the justification of column headers. used by DataFrameFormatter. |
| display.column_space | 12 | No description available. |
| display.date_dayfirst | False | When True, prints and parses dates with the day first, eg 20/01/2005 |
| display.date_yearfirst | False | When True, prints and parses dates with the year first, eg 2005/01/20 |
| display.encoding | UTF-8 | Defaults to the detected encoding of the console. Specifies the encoding to be used for strings returned by to_string, these are generally strings meant to be displayed on the console. |
| display.expand_frame_repr | True | Whether to print out the full DataFrame repr for wide DataFrames across multiple lines, max_columns is still respected, but the output will wrap-around across multiple “pages” if its width exceeds display.width. |
| display.float_format | None | The callable should accept a floating point number and return a string with the desired format of the number. This is used in some places like SeriesFormatter. See core.format.EngFormatter for an example. |
| display.large_repr | truncate | For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can show a truncated table (the default), or switch to the view from df.info() (the behaviour in earlier versions of pandas). allowable settings, [‘truncate’, ‘info’] |
| display.latex.repr | False | Whether to produce a latex DataFrame representation for Jupyter frontends that support it. |
| display.latex.escape | True | Escapes special characters in DataFrames, when using the to_latex method. |
| display.latex.longtable | False | Specifies if the to_latex method of a DataFrame uses the longtable format. |
| display.latex.multicolumn | True | Combines columns when using a MultiIndex |
| display.latex.multicolumn_format | ‘l’ | Alignment of multicolumn labels |
| display.latex.multirow | False | Combines rows when using a MultiIndex. Centered instead of top-aligned, separated by clines. |
| display.max_columns | 0 or 20 | max_rows and max_columns are used in repr() methods to decide if to_string() or info() is used to render an object to a string. In case Python/IPython is running in a terminal this is set to 0 by default and pandas will correctly auto-detect the width of the terminal and switch to a smaller format in case all columns would not fit vertically. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection, in which case the default is set to 20. ‘None’ value means unlimited. |
| display.max_colwidth | 50 | The maximum width in characters of a column in the repr of a pandas data structure. When the column overflows, a “…” placeholder is embedded in the output. ‘None’ value means unlimited. |
| display.max_info_columns | 100 | max_info_columns is used in DataFrame.info method to decide if per column information will be printed. |
| display.max_info_rows | 1690785 | df.info() will usually show null-counts for each column. For large frames this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller dimensions then specified. |
| display.max_rows | 60 | This sets the maximum number of rows pandas should output when printing out various output. For example, this value determines whether the repr() for a dataframe prints out fully or just a truncated or summary repr. ‘None’ value means unlimited. |
| display.min_rows | 10 | The numbers of rows to show in a truncated repr (when max_rows is exceeded). Ignored when max_rows is set to None or 0. When set to None, follows the value of max_rows. |
| display.max_seq_items | 100 | when pretty-printing a long sequence, no more then max_seq_items will be printed. If items are omitted, they will be denoted by the addition of “…” to the resulting string. If set to None, the number of items to be printed is unlimited. |
| display.memory_usage | True | This specifies if the memory usage of a DataFrame should be displayed when the df.info() method is invoked. |
| display.multi_sparse | True | “Sparsify” MultiIndex display (don’t display repeated elements in outer levels within groups) |
| display.notebook_repr_html | True | When True, IPython notebook will use html representation for pandas objects (if it is available). |
| display.pprint_nest_depth | 3 | Controls the number of nested levels to process when pretty-printing |
| display.precision | 6 | Floating point output precision in terms of number of places after the decimal, for regular formatting as well as scientific notation. Similar to numpy’s precision print option |
| display.show_dimensions | truncate | Whether to print out dimensions at the end of DataFrame repr. If ‘truncate’ is specified, only print out the dimensions if the frame is truncated (e.g. not display all rows and/or columns) |
| display.width | 80 | Width of the display in characters. In case Python/IPython is running in a terminal this can be set to None and pandas will correctly auto-detect the width. Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to correctly detect the width. |
| display.html.table_schema | False | Whether to publish a Table Schema representation for frontends that support it. |
| display.html.border | 1 | A border=value attribute is inserted in the <table> tag for the DataFrame HTML repr. |
| display.html.use_mathjax | True | When True, Jupyter notebook will process table contents using MathJax, rendering mathematical expressions enclosed by the dollar symbol. |
| io.excel.xls.writer | xlwt | The default Excel writer engine for ‘xls’ files.Deprecated since version 1.2.0: As xlwt package is no longer maintained, the xlwt engine will be removed in a future version of pandas. Since this is the only engine in pandas that supports writing to .xls files, this option will also be removed. |
| io.excel.xlsm.writer | openpyxl | The default Excel writer engine for ‘xlsm’ files. Available options: ‘openpyxl’ (the default). |
| io.excel.xlsx.writer | openpyxl | The default Excel writer engine for ‘xlsx’ files. |
| io.hdf.default_format | None | default format writing format, if None, then put will default to ‘fixed’ and append will default to ‘table’ |
| io.hdf.dropna_table | True | drop ALL nan rows when appending to a table |
| io.parquet.engine | None | The engine to use as a default for parquet reading and writing. If None then try ‘pyarrow’ and ‘fastparquet’ |
| mode.chained_assignment | warn | Controls SettingWithCopyWarning: ‘raise’, ‘warn’, or None. Raise an exception, warn, or no action if trying to use chained assignment. |
| mode.sim_interactive | False | Whether to simulate interactive mode for purposes of testing. |
| mode.use_inf_as_na | False | True means treat None, NaN, -INF, INF as NA (old way), False means None and NaN are null, but INF, -INF are not NA (new way). |
| compute.use_bottleneck | True | Use the bottleneck library to accelerate computation if it is installed. |
| compute.use_numexpr | True | Use the numexpr library to accelerate computation if it is installed. |
| plotting.backend | matplotlib | Change the plotting backend to a different backend than the current matplotlib one. Backends can be implemented as third-party libraries implementing the pandas plotting API. They can use other plotting libraries like Bokeh, Altair, etc. |
| plotting.matplotlib.register_converters | True | Register custom converters with matplotlib. Set to False to de-register. |
本文已收录于 http://www.flydean.com/14-python-pandas-options/
最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!
Pandas高级教程之:自定义选项的更多相关文章
- Pandas高级教程之:GroupBy用法
Pandas高级教程之:GroupBy用法 目录 简介 分割数据 多index get_group dropna groups属性 index的层级 group的遍历 聚合操作 通用聚合方法 同时使用 ...
- Pandas高级教程之:Dataframe的合并
目录 简介 使用concat 使用append 使用merge 使用join 覆盖数据 简介 Pandas提供了很多合并Series和Dataframe的强大的功能,通过这些功能可以方便的进行数据分析 ...
- Pandas高级教程之:时间处理
目录 简介 时间分类 Timestamp DatetimeIndex date_range 和 bdate_range origin 格式化 Period DateOffset 作为index 切片和 ...
- Pandas高级教程之:处理text数据
目录 简介 创建text的DF String 的方法 columns的String操作 分割和替换String String的连接 使用 .str来index extract extractall c ...
- Pandas高级教程之:处理缺失数据
目录 简介 NaN的例子 整数类型的缺失值 Datetimes 类型的缺失值 None 和 np.nan 的转换 缺失值的计算 使用fillna填充NaN数据 使用dropna删除包含NA的数据 插值 ...
- Pandas高级教程之:category数据类型
目录 简介 创建category 使用Series创建 使用DF创建 创建控制 转换为原始类型 categories的操作 获取category的属性 重命名categories 使用add_cate ...
- Pandas高级教程之:plot画图详解
目录 简介 基础画图 其他图像 bar stacked bar barh Histograms box Area Scatter Hexagonal bin Pie 在画图中处理NaN数据 其他作图工 ...
- Pandas高级教程之:统计方法
目录 简介 变动百分百 Covariance协方差 Correlation相关系数 rank等级 简介 数据分析中经常会用到很多统计类的方法,本文将会介绍Pandas中使用到的统计方法. 变动百分百 ...
- Pandas高级教程之:window操作
目录 简介 滚动窗口 Center window Weighted window 加权窗口 扩展窗口 指数加权窗口 简介 在数据统计中,经常需要进行一些范围操作,这些范围我们可以称之为一个window ...
随机推荐
- JUC 并发编程--12, 使用AtomicInteger 实现一把锁(排队自旋锁), 代码演示
前面 使用自旋锁实现了一把锁,(请看 第5篇) volatile 三大特性: 可见性, 不保证原子性, 禁止指令重排 为了解决 volatile不保证原子性的问题, 引入了原子类, AtomicInt ...
- java后端知识点梳理——MySQL
MySQL的索引 索引是对数据库表中一列或多列的值进行排序的一种结构,使用索引可快速访问数据库表中的特定信息,就像一本书的目录一样,可以加快查询速度.InnoDB 存储引擎的索引模型底层实现数据结构为 ...
- 十、使用Varnish加速Web
使用Varnish加速Web 构建Web服务器(web1) [root@web1 ~]# yum -y install httpd [root@web1 ~]# systemctl start ...
- DarkGreenTrip博客搭建成功
本博客(https://www.cnblogs.com/zhangshuhao1116)自2021年6月19日由 Shu-How Z 搭建成功,2018年搭建过hexo+next.Wordpress ...
- 【贪心】8.29题解-cut
cut 题目描述 出于某些方面的需求,我们要把一块N×M的木板切成一个个1×1的小方块. 对于一块木板,我们只能从某条横线或者某条竖线(要在方格线上),而且这木板是不均匀的,从不同的线切割下去要花不同 ...
- OO unit2 summary
Unit2 一.第一次作业 1.UML 2.Sequence Diagram 3.同步块设置与锁处理 采用了生产者-消费者模式,用共享对象来连接不同的线程. 第一次作业中,我有三个线程:Receive ...
- R-聚类
一.定义:将物理或抽象对象的集合分成由类似的对象组成的多个类的过程被称为聚类 二.距离:欧几里得度量(euclidean metric)也称欧氏距离 绝对值距离(manhattan) ...
- Apache Hudi在Hopworks机器学习的应用
Hopsworks特征存储库统一了在线和批处理应用程序的特征访问而屏蔽了双数据库系统的复杂性.我们构建了一个可靠且高性能的服务,以将特征物化到在线特征存储库,不仅仅保证低延迟访问,而且还保证在服务时间 ...
- 关于.Net Core使用Elasticsearch(俗称ES)、Kibana的研究说明
关于ElasticSearch Elasticsearch是一个分布式的开源搜索和分析引擎,适用于所有类型的数据,包括文本.数字.地理空间.结构化和非结构化数据.Elasticsearch 在 Apa ...
- 关于vim
全部删除:按esc后,然后dG全部复制:按esc后,然后ggyG全选高亮显示:按esc后,然后ggvG或者ggVG 在win中使用<C-a>是全选,如果需要在vim中使用<C-a&g ...